Advertisement

Absorption Spectroscopy in the Ultraviolet and Visible Regions

Chapter
Part of the Polymers book series (POLYMERS, volume 7)

Abstract

Experimentally, the fUV (λ < 200 nm) is more demanding than the nUV/VIS-region to be discussed in the next sections, since the beam has to be conducted in vacuum and since the laboratory radiation sources are weak. Only very few solvents are transparent in the fUV. Polymers therefore have to be measured in the form of thin films and mostly show intense, structureless absorption bands (1–4) which become narrower and partly structured at low temperature. Qualitatively, these spectra resemble in the long-wavelength region of the fUV (about 100 to 200 nm) to absorption edges in insulators which are due to transitions from the energetically highest VB to the lowest CB. Unfortunately, the interpretation of the spectra is not always straightforward because of the pseudo-ID-band nature of polymers, i.e. their intermediate position with regard to electronic structure between true (3D) solids and molecules (see also Figs. 2.9., 2.10, and 2.12).

Keywords

Absorption Edge Absorption Spectroscopy Transition Dipole Moment Energy Level Diagram Electronic Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Partrigde, R.H.: J. Chem. Phys. 45, 1685 (1961)CrossRefGoogle Scholar
  2. 2.
    Buck, W.C., Thomas, B.R., Weinreb, A.: J. Chem. Phys. 48, 549 (1968)CrossRefGoogle Scholar
  3. 3.
    Partrigde, R.H.: J. Chem. Phys. 47, 4223 (1967)CrossRefGoogle Scholar
  4. 4.
    George, R.A., Martin, D.H., Wilson, E.G.: J. Phys. C.: Solid State Phys. 5, 871 (1972)CrossRefGoogle Scholar
  5. 5.
    George, R.A., Roberts, L, Wilson, E.G.: J. Phys. E: Sci. Instrum. 4, 384 (1971)CrossRefGoogle Scholar
  6. 6.
    Bloor, D.: Chem. Phys. Lett. 40, 323 (1976)CrossRefGoogle Scholar
  7. 7.
    Koch, E.E., Sonntag, B.F.: Molecular Spectroscopy with Synchrotron Radiation in Synchrotron Radiation, C. Kunz (ed.), Topics in Current Physics, Berlin, Heidelberg, New York: 1979, p.269Google Scholar
  8. 8.
    Jortner, J, Leach, S. (eds.): Perspectives of Synchrotron Radiation. Application to Molecular Dynamics and Photochemistry. J. Chim. Phys 77, No. 1 (1980) pp. 1–57Google Scholar
  9. 9.
    Lee, C.H., Waddell, W.H., Casassa, E.F.: Macromolecules 14, 1021 (1981)CrossRefGoogle Scholar
  10. 10.
    Kortüm, G.: Kolorimetrie, Photometrie und Spektrometrie, 4th Ed., Berlin, Göttingen, Heidelberg: Springer 1962Google Scholar
  11. 11.
    Murrell, J.N.: The Theory of Electronic Spectra of Organic Molecules, London: Methuen 1963; German Transi: B.I. Hochschultaschenbücher, No. 250/250a, Mannheim: Bibliogr. Inst. 1967Google Scholar
  12. 12.
    Herzberg, G.: Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd Ed., New York: Van Nostrand-Reinhold 1950Google Scholar
  13. 13.
    Kasha, M.: Discuss. Faraday Soc. 9, 14 (1950)CrossRefGoogle Scholar
  14. 14.
    Buck, W.L., Thomas, B.R., Weinreb, A.: J. Chem. Phys. 48, 549 (1968)CrossRefGoogle Scholar
  15. 15.
    Schauenstein, E., Klöpffer, W.: Acta histochim. Suppl. VI, 227 (1965)Google Scholar
  16. 16.
    Klöpffer, W.: Europ. Pol. J. 11, 203 (1975)CrossRefGoogle Scholar
  17. 17.
    Kubica-Kowal, J.: Makromol. Chem. 178, 3017 (1977)CrossRefGoogle Scholar
  18. 18a.
    Geuskens, G. (ed.): Degradation and Stabilisation of Polymers, London: Applied Science Publ 1975Google Scholar
  19. 18b.
    Rånby, B, Rabek, J.F.: Photodegradation, Photooxidation and Photostabilisation of Polymers, London: Wiley 1975Google Scholar
  20. 18c.
    Hawkins, W.L. (ed.): Polymer Stabilization, New York: Wiley 1972Google Scholar
  21. 19.
    Klöpffer, W.: J. Chem. Phys. 50, 2337 (1969)CrossRefGoogle Scholar
  22. 20.
    Magazanik, B., Chargaff, E.: Biochem. Biophys. Acta 7, 396 (1951)CrossRefGoogle Scholar
  23. 21.
    Thomas, R.: Biochem. Biophys. Acta 14, 231 (1954)CrossRefGoogle Scholar
  24. 22.
    Tinoco, I., Jr.: J. Am. Chem. Soc. 82, 4785 (1960)CrossRefGoogle Scholar
  25. 23.
    Eisinger, J.: Photochem. Photobiol. 7, 597 (1968)CrossRefGoogle Scholar
  26. 24.
    Bolton, H.C., Weiss, J.J.: Nature 195, 666 (1962)CrossRefGoogle Scholar
  27. 25.
    Nesbet, R.K.: Mol. Phys. 7, 211 (1964)CrossRefGoogle Scholar
  28. 26.
    Fowler, G.N.: Mol. Phys. 8, 383 (1964)CrossRefGoogle Scholar
  29. 27.
    Vala, M.T., Rice, S.A.: J. Chem. Phys. 39, 2348 (1963)CrossRefGoogle Scholar
  30. 28.
    Brüssau, R.J., Stein, DJ.: Ang. Makromol. Chem. 12, 59 (1970)CrossRefGoogle Scholar
  31. 29.
    Pearson, J.M., Turner, S.R., Ledwith, A., in: Molecular Association, R. Foster (ed.), London: Academic Press 1979, p. 79Google Scholar
  32. 30.
    Briegleb, G.: Elektronen-Donator-Acceptor-Komplexe, Berlin, Göttingen, Heidelberg: Springer 1961Google Scholar
  33. 31.
    Mort, J., Pfister, G. (eds.): Electronic Properties of Polymers, New York: Wiley 1982Google Scholar
  34. 32.
    Hashimoto, S., Seki, K., Sato, N., Inokuchi, H.: J. Chem. Phys. 76, 163 (1982)CrossRefGoogle Scholar
  35. 33.
    Armstrong, D.R., Jamieson, J., Perkins, P.G.: Theor. Chim. Acta 50, 193 (1978)CrossRefGoogle Scholar
  36. 34.
    Schauenstein, E., Bayzer, H.: J. Pol. Sci. 16, 45 (1955)CrossRefGoogle Scholar
  37. 35.
    Beavan, S.W., Hargreaves, J.S., Phillips, D.: Advances in Photochemistry Vol. 11, 207, New York: Wiley 1979Google Scholar
  38. 36.
    Rao, C.N.R.: Ultraviolet and Visible Spectroscopy, London: Butterworth 1961Google Scholar
  39. 37.
    DMS UV Atlas of Organic Compounds, London: Butterworth, Weinheim: Verlag Chemie 1966–1971Google Scholar
  40. 38.
    Friedel, R.A., Orchin, M.: Ultraviolet Spectra of Aromatic Compounds, New York: Wiley, London: Chapman & Hall 1951Google Scholar
  41. 39.
    Pestemer, M., Scheibe, G., Schöntag, A., Brück, D., in: Landolt-Börnstein, 6. Auflage, I. Band, 3. Teil (Molekeln II), 78, Berlin, Göttingen, Heidelberg: Springer 1951Google Scholar
  42. 40.
    Pestemer, M.: Correlation tables for the structural determination of compounds by ultraviolet light absorptiometry, Weinheim: Verlag Chemie: 1974Google Scholar
  43. 41.
    Calvert, J.G., Pitts, J.N.P., Jr.: Photochemistry, New York: Wiley 1966Google Scholar
  44. 42.
    Phillips, J.P., et al. (eds.): Organic Electronic Spectra Data, Vol. I–VIII, New York: Wiley 1973Google Scholar
  45. 43.
    Sadtler Standard Ultraviolet Reference Spectra, London: HeydenGoogle Scholar
  46. 44.
    Bloor, D., Williams, R.L., Ando, D.J.: Chem. Phys. Lett. 78, 67 (1981)CrossRefGoogle Scholar
  47. 45.
    Sixl, H.: Spectroscopy of the Intermediate States of the Solid State Polymerization Reaction in Diacetylene Crystals, in Advances in Polym. Sci. (1983)Google Scholar
  48. 46.
    Takai, Y., Ozawa T., Mizutani, M. Ieda, M.: J. Pol. Sci. Pol. Phys. Ed. 15, 945 (1977)CrossRefGoogle Scholar
  49. 47.
    Davydov, A.S.: Theory of Molecular Excitons, translated by M. Kasha and M. Oppenheimer Jr., New York: McGraw-Hill, 1st Ed. 1962, 2nd Ed. 1971Google Scholar
  50. 48.
    Garcia-Rubio, L.H.: J. Appl. Pol. Sci. 27, 2043 (1982)CrossRefGoogle Scholar
  51. 49.
    Ouchi, I.: Polymer (Japan) 15, 225 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  1. 1.Battelle-Institut e. V.Frankfurt/M. 90Germany

Personalised recommendations