Advertisement

Remarks on Recent Developments in Inverse Scattering Theory

  • K. J. Langenberg
  • G. Bollig
  • D. Brück
  • M. Fischer
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Inverse scattering, as applied to such different fields as radar, geophysical probing, medical diagnostics, or non-destructive testing of materials with ultrasound attempts to identify or reconstruct a geometrical obstacle and structure illuminated by an electromagnetic, acoustic or elastic wave from the information contained in the scattered field. As illustrated by the far-field behavior, this information is available through the radiation pattern of the obstacle, which is generally a function of direction and frequency uniquely determined by the scattering geometry. The inversion process, therefore, requires the variation of the mutual situation of the transmitter and receiver and/or the frequency of the exciting wave.

Keywords

Synthetic Aperture Radar Inverse Scattering Scattered Field Physical Optic Holographic Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger M, Brück D, Fischer M, Langenberg KJ, Oberst J, Schmitz V (1981) Potential and limits of holographic reconstruction algorithms. J Nondestr Eval 2:85.CrossRefGoogle Scholar
  2. Bleistein N (1976) Physical optics far-field inverse scattering in the time domain. J Acoust Soc Am 60:1249.CrossRefGoogle Scholar
  3. Bleistein N, Cohen JK (1977) Non-uniqueness in the inverse source problem in acoustics and electromagnetics. J Math Phys 18:194.CrossRefGoogle Scholar
  4. Bojarski NN (1973) Inverse scattering. Naval Air Systems Command, Washington, D.C., Naval Air Systems Command Rep., Contract N 000 19-73-C-0312, Sec 11, p 3.Google Scholar
  5. Bojarski NN (1982) A survey of the physical optics inverse scattering. IEEE Trans Ant Propagat AP-30:980.Google Scholar
  6. Bollig G, Langenberg KJ (1983) The singularity expansion method as applied to the elastodynamic scattering problem. Wave Motion 5:331.CrossRefGoogle Scholar
  7. Cohen JK, Bleistein N (1979) The singular function of a surface and physical optics inverse scattering. Wave Motion 1:153.CrossRefGoogle Scholar
  8. Detlefsen J (1979) Abbildung mit Mikrowellen. Fortschrittberichte der VDI-Zeitschriften, Reihe 10, Nr 5. VDI-Verlag, Düsseldorf.Google Scholar
  9. Devaney AJ, Sherman GC (1982) Non-uniqueness in inverse source and scattering problems. IEEE Trans Ant Propagat AP-30:1034.Google Scholar
  10. Devaney AJ (1982) An inversion formula for inverse scattering with-in the Born approximation. Optics Letts 7:111.CrossRefGoogle Scholar
  11. Fischer M, Langenberg KJ (1984) Limitations and defects of exact inverse scattering. IEEE Trans Ant Propagat (accepted for publication).Google Scholar
  12. Ganapathy S, Wu WS, Schmult B (1982) Analysis and design for a real-time system for nondestructive valuation in the nuclear industry. Ultrasonics 20:249.CrossRefGoogle Scholar
  13. Langenberg KJ, Brück D, Fischer M (1983a) Inverse scattering algorithms. In: Höller P (ed) Research and development to new procedures in NDT. Springer, Berlin Heidelberg New York.Google Scholar
  14. Langenberg KJ, Bollig G, Brück D, Fischer M (1983b) Remarks on recent developments in inverse scattering theory. Proc Int Symp URSI Comm B, Santiago de Compostela, Spain.Google Scholar
  15. Morse PM, Ingard KU (1968) Theoretical acoustics. McGraw Hill, New York.Google Scholar
  16. Porter RP (1970) Diffraction-limited scalar image formation with holograms of arbitrary shape. J Opt Soc Am 60:1051.CrossRefGoogle Scholar
  17. Prosser RT (1969) Formal solution of inverse scattering problems. J Math Phys 10:1819.CrossRefGoogle Scholar
  18. Rose JH, Richardson JM (1983) Time domain Born approximation. J Nondestr Eval 3 Eval.Google Scholar
  19. Wolf E (1969) Three-dimensional structure determination of semi-transparent objects from holographic data. Optics Comm 1:153.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • K. J. Langenberg
    • 1
  • G. Bollig
    • 2
  • D. Brück
    • 2
  • M. Fischer
    • 2
  1. 1.Dept. Electrical EngineeringUniversity of KasselKasselGermany
  2. 2.Fachbereich 12.2 ElektrotechnikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations