Skip to main content

The Performance of Bat Sonar Systems

  • Conference paper

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Echolocating bats emit orientation sounds and analyze the returning echoes, in order to detect the presence, and to characterize the location and nature of the reflecting target. The operational principles of bat echolocation systems are similar to those of technical systems, e.g. radar and sonar systems. Like those, biological systems consist of a transmitter which produces and radiates a particular type of signal, and a receiver which picks up and analyzes the returning echoes. In order to detect a target, a bat has to decide whether an echo of its own sound is present or not. The detection is only useful when combined with further information processing. The distance of a target is determined by the time delay between signal emission and echo reception. The direction or angular position of a target is determined by interaural echo differences. The relative velocity between bat and target is encoded in the Doppler-shifted echoes. It can also be determined by range tracking. Fluttering movements of the target, e.g. wing movements of insects, produce amplitude and frequency modulations in the echoes. Further target features such as size, shape and surface properties are encoded in a complex spectral composition and the temporal structure of the whole echo field. The detection, localization, and characterization of targets is restricted in the presence of interference factors such as external and internal noise, clutter echoes, and spectral echo changes due to the frequency-dependent directionality of the transmitting and receiving antennae and due to atmospheric influences. An echolocation system with an ideally designed type of signal and receiver for the extraction of all information with maximal accuracy and for a maximal suppression of all possible interference is not realizable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airapetianz ES, Konstantinov AI (1970) Echolocation in nature. Nauka, Leningrad (in Russian). English translation: Israel Program of Scientific Translations. Jerusalem 1973.

    Google Scholar 

  • Airapetianz ES, Konstantinov AI (1974) Echolocation in nature. Nauka, Leningrad (in Russian). English translation: Joint Publications Research Service, No 63328. 1000 North Glebe Road, Airlington, Virginia 22201.

    Google Scholar 

  • Flieger E, Schnitzler H-U (1973) Ortungsleistungen der Fledermaus Rhinolophus ferrumequinum bei ein-und beidseitiger Ohrverstopfung. J Comp Physiol 82:93–102.

    Article  Google Scholar 

  • Griffin DR (1958) Listening in the dark. Yale University Press, New Haven.

    Google Scholar 

  • Griffin DR, Webster FA, Michael CR (1960) The echolocation of flying insects by bats. Anim Behav 8:141–154.

    Article  Google Scholar 

  • Grinnell AD, Grinnell VS (1965) Neural correlates of vertical localization in echolocating bats. J Physiol 181:830–851.

    PubMed  CAS  Google Scholar 

  • Gustafon Y, Schnitzler H-U (1979) Echolocation and obstacle avoidance in the hipposiderid bat Asellia tridens. J Comp Physiol 131:161–167.

    Article  Google Scholar 

  • Heilmann U (1982) Das Frequenzunterscheidungsvermögen der Großen Hufeisennase, Rhinolophus ferrumequinum. 56. Hauptvers Dt Ges Säugetierk.

    Google Scholar 

  • Kick SA (1982) Target-detection by the echolocating bat, Eptesicus fuscus. J Comp Physiol 145:431–435.

    Article  Google Scholar 

  • Neuweiler G (1980) Auditory processing of echoes: peripheral processing. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum, New York, p 519.

    Google Scholar 

  • Neuweiler G, Möhres FP (1967) Die Rolle des Ortungsgedächtnisses bei der Orientierung der Großblatt-Fledermaus Megaderma lyra. Z vergl Physiol 57:147–171.

    Article  Google Scholar 

  • Novick A (1977) Acoustic orientation. In: Wimsatt WA (ed) Biology of bats, vol III. Academic, New York, p 73.

    Google Scholar 

  • Peff TC, Simmons JA (1972) Horizontal-angle resolution by echolocating bats. J Acoust Soc Am 51:2063–2065.

    Article  Google Scholar 

  • Pollack GD (1980) Organizational and encoding features of single neurons in the inferior colliculus of b’ats. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum, New York, p 549.

    Google Scholar 

  • Pye JD (1980) Echolocation signals and echoes in air. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum, New York, p 309.

    Google Scholar 

  • Schnitzler H-U (1968) Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. Z vergl Physiol 57:376–408.

    Article  Google Scholar 

  • Schnitzler H-U (1970a) Echoortung bei der Fledermaus Chilonycteris rubiginosa. Z vergl Physiol 68:25–39.

    Article  Google Scholar 

  • Schnitzler H-U (1970b) Comparison of the echolocation behavior in Rhinolophus ferrumequinum and Chilonycteris rubiginosa. Bijdr Dierk 40:77–80.

    Google Scholar 

  • Schnitzler H-U (1973a) Control of Doppier shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. J Comp Physiol 82:79–92.

    Article  Google Scholar 

  • Schnitzler H-U (1973b) Die Echoortung der Fledermäuse und ihre hörphysiologischen Grundlagen. Fortschr Zool 21:136–189.

    PubMed  CAS  Google Scholar 

  • Schnitzler H-U (1978) Die Detektion von Bewegungen durch Echoortung bei Fledermäusen. Verh Dtsch Zool Ges. Gustav Fischer, Stuttgart, p 16.

    Google Scholar 

  • Schnitzler H-U, Henson OW Jr (1980) Performance of airborne animal sonar systems: I. Microchiroptera. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum, New York, p 109.

    Google Scholar 

  • Schnitzler H-U, Menne D, Kober R, Heblich K (1983) The acoustical image of fluttering insects in echolocating bats. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology: Roots and growing points. Springer, Berlin Heidelberg, p 235–250.

    Google Scholar 

  • Schnitzler H-U, Ostwald J (1983) Adaptations for the detection of fluttering insects by echolocating horseshoe bats. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum, New York, p 801.

    Google Scholar 

  • Schuller G, Beuter K, Schnitzler H-U (1974) Response to frequency shifted artificial echoes in the bat Rhinolophus ferrumequinum. J Comp Physiol 89:275–286.

    Article  Google Scholar 

  • Simmons JA (1973) The resolution of target range by echolocating bats. J Acoust Soc Am 54: 157–173.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA (1979) Perception of echo phase information in bat sonar. Science 204:1336–1338.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Kick SA, Lawrence BD (1983) Localization with biosonar signals in bats. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum, New York, p247.

    Google Scholar 

  • Simmons JA, Lavender WA (1976) Representation of target range in the sonar receivers of echolocating bats. J Acoust Soc Am 60 (suppl 1):5.

    Article  Google Scholar 

  • Strother GK (1961) Note on the possible use of ultrasonic pulse compression by bats. J Acoust Soc Am 33:696–697.

    Article  Google Scholar 

  • Suga N, O’Neill WE (1980) Auditory processing of echoes: representation of acoustic information from the environment in the bat cerebral cortex. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum, New York, p 589.

    Google Scholar 

  • Trappe M (1982) Verhalten und Echoortung der Großen Hufeisennase (Rhinolophus ferrumequinum) beim Insektenfang. Dissertation, University of Tübingen, Germany.

    Google Scholar 

  • Trappe M, Schnitzler H-U (1982) Doppler-shift compensation in insect-catching horseshoe bats. Naturwissenschaften 69:193–194.

    Article  Google Scholar 

  • Webster FA (1963) Active energy radiating systems: the bat and ultrasonic principles II, acoustical control of airborne interception by bats. Proc Int Congr Tech and Blindness AFB, New York 1:49–135.

    Google Scholar 

  • Webster FA, Brazier OB (1965) Experimental studies on target detection, evaluation, and interception by echolocating bats. Aerospace Medical Res Lab, Wright-Patterson Air Force Base, Ohio, AD 628055.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schnitzler, HU. (1984). The Performance of Bat Sonar Systems. In: Varjú, D., Schnitzler, HU. (eds) Localization and Orientation in Biology and Engineering. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69308-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69308-3_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69310-6

  • Online ISBN: 978-3-642-69308-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics