Skip to main content

Abstract

Bacterial chromosomes specify several thousand polypeptides; the matching of a single gene product with a specific gene is thus difficult or (more usually) impossible. The principal approach that has been developed to circumvent this difficulty is to effect a physical separation of the gene of interest from the chromosome by cloning in a bacterial plasmid. The problem is then resolved by utilization of a procedure for the selective visualization of the products encoded by plasmid genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonner WM, Laskey RA (1974) A film detection method for tritium-labelled proteins and nucleic acids in Polyacrylamide gels. Eur J Biochem 48: 83–88

    Article  Google Scholar 

  • Kennedy N, Beutin L, Achtman M, Skurray R, Rhamsdorf U, Herrlich P (1977) Conjugation proteins encoded by the F sex factor. Nature 270: 580–585

    Article  PubMed  CAS  Google Scholar 

  • Moll A, Manning PA, Timmis KN (1980) Plasmid-determined resistance to serum bacteriocidal activity: a major outer membrane protein, the traT gene product is responsible for plasmid-specified serum resistance in Escherichia coll Infect Immun 28: 359–367

    CAS  Google Scholar 

  • Pratt JM, Boulnois GJ, Darby V, Orr E, Wahle E, Holland IB (1981) Identification of gene products programmed by restriction endonuclease DNA fragments using an E. coli in vitro system. Nucleic Acids Res 9: 4459–4474

    Article  CAS  Google Scholar 

  • Reeves JN (1978) Selective expression of transduced or cloned DNA in minicells containing plasmid pKB280. Nature 276: 728–729

    Article  Google Scholar 

  • Sancar A, Hack AM, Rupp WD (1979) Simple method for identification of plasmid-coded proteins. J Bacteriol 137: 692–693

    PubMed  CAS  Google Scholar 

  • Sancar A, Wharton RP, Seltzer S, Kacinski BM, Clarke ND, Rupp WD (1981) Identification of the uvrA gene product. J Mol Biol 148: 45–62

    Article  PubMed  CAS  Google Scholar 

  • Zubay G (1973) In vitro synthesis of protein in microbial systems. Annu Rev Genet 7: 267–287

    Article  PubMed  CAS  Google Scholar 

  • Backman K, Ptashne M (1978) Maximizing gene expression on a plasmid using recombination in vitro. Cell 13: 65–71

    Article  PubMed  CAS  Google Scholar 

  • Frazer AC, Curtiss R III (1975) Production, properties and utility of bacterial minicells. Curr Top Microbiol 69: 1–84

    CAS  Google Scholar 

  • Meagher RB, Tait RC, Betlach M, Boyer HW (1977) Protein expression in E. coli minicells by recombinant plasmids. Cell 10: 521–536

    CAS  Google Scholar 

  • Murray NE, Brammar WJ, Murray K (1977) Lambdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet 150: 53–61

    Article  PubMed  CAS  Google Scholar 

  • Reeve JN (1977) Bacteriophage infection of minicells. A general method for identification of in vivo bacteriophage directed polypeptide biosynthesis. Mol Gen Genet 158: 73–79

    Article  PubMed  CAS  Google Scholar 

  • Reeve JN (1978) Selective expression of transduced or cloned DNA in minicells containing plasmid pKB280. Nature 276: 728–729

    Article  PubMed  CAS  Google Scholar 

  • Reeve JN (1979) Use of minicells for bacteriophage directed polypeptide biosynthesis. Methods Enzymol 68: 493–503

    Article  PubMed  CAS  Google Scholar 

  • Reeve JN (1981) øX174-directed DNA and protein syntheses in infected minicells. J Virol 40: 396–402

    PubMed  CAS  Google Scholar 

  • Sauer RT, Anderegg R (1978) Primary structure of the X repressor. Biochemistry 17: 1092–1100

    Article  PubMed  CAS  Google Scholar 

  • Auerswald EA, Ludwig G, Schaller H (1981) Structural analysis of Tn5. In: Movable genetic elements. Cold Spring Harbor Symp Quant Biol, vol XLV, pp 107–113

    Google Scholar 

  • Bonner WM, Laskey RA (1974) A film detection method for tritium labelled proteins and nucleic acids in Polyacrylamid gels. Eur J Biochem 46: 83–88

    Article  PubMed  CAS  Google Scholar 

  • Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134: 1141–1156

    PubMed  CAS  Google Scholar 

  • Jorgensen RA, Rothstein SJ, Reznikoff WS (1979) A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol Gen Genet 177: 65–72

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Marcoli R, Tiola S, Bickle TA (1980) The DNA sequence of an IS1 flanked transposon coding for resistance to chloramphenicol and fusidic acid. FEBS Lett 110: 11–14

    Article  PubMed  CAS  Google Scholar 

  • Pühler A, Klipp W (1981) Fine structure analysis of the gene region for N2 -fixation (nif) of Klebsiella pneumoniae. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin Heidelberg New York, pp 276–286

    Google Scholar 

  • Pühler A, Arnold W, Horn D, Jäckel B, Priefer U, Simon R,.Weber G (1983) Genetic analysis of R. meliloti plasmids and/2, meliloti nifgenes. In: Clark KW, Stephens JHG (eds) Proc 8th North American Rhizobium Conf. Printing Services The University of Manitoba, Canada, pp 90–114

    Google Scholar 

  • Schröder J, Hillebrand A, Klipp W, Pühler A (1981) Expression of plant tumor-specific proteins in minicells of Escherichia coli: a fusion protein of lysopine dehydrogenase with chlor-amphenicol acetyltransferase. Nucleic Acids Res 9: 5187–5202

    Article  PubMed  Google Scholar 

  • Collins J (1979) Cell-free synthesis of proteins coding for mobilisation functions of ColEl and transposition functions of Tn3. Gene 6: 29–42

    Article  PubMed  CAS  Google Scholar 

  • Lutkenhaus JF, Wu HC (1980) Determination of transcriptional units and gene products from the ftsA region of Escherichia colt J Bacteriol 143: 1281–1288

    CAS  Google Scholar 

  • Pratt JM, Boulnois GJ, Darby V, Orr E, Wahle E, Holland IB (1981) Identification of gene products programmed by restriction endonuclease DNA fragments using an E. coli in vitro system. Nucleic Acids Res 9: 4459–4474

    Article  CAS  Google Scholar 

  • Ptashne M (1967) Isolation of the\phage repressor. Proc Natl Acad Sci USA 57: 306–313

    Article  PubMed  CAS  Google Scholar 

  • Reeve JN (1978) Selective expression of transduced or cloned DNA in minicells containing plasmid pKB280. Nature 276: 728–729

    Article  PubMed  CAS  Google Scholar 

  • Sancar A, Hack AM, Rupp WD (1979) Simple method for identification of plasmid-coded proteins. J Bacteriol 137: 692–693

    PubMed  CAS  Google Scholar 

  • Uhlin BE, Molin S, Gustafsson P, Nordstrom K (1979) Plasmids with temperature-dependent copy number for amplification of cloned genes and their products. Gene 6: 91–106

    Article  PubMed  CAS  Google Scholar 

  • Wilson CR, Skinner SE, Shaw WV (1981) Analysis of two chloramphenicol resistance plasmids from Staphylococcus aureus: Insertional inactivation of Cm resistance, mapping of restriction sites and construction of cloning vehicles. Plasmid 5: 245–258

    Google Scholar 

  • Yang H-Y, Ivashkiv L, Chen HZ, Zubay G, Cashel M (1980) Cell-free coupled transcription-translation system for investigation of linear DNA segments. Proc Natl Acad Sci USA 77:7029– 7033

    Google Scholar 

  • Zubay G (1973) In vitro synthesis of protein in microbial systems. Annu Rev Genet 7: 267–287

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boulnois, G.J. et al. (1984). Gene Expression. In: Pühler, A., Timmis, K.N. (eds) Advanced Molecular Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69305-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69305-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69307-6

  • Online ISBN: 978-3-642-69305-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics