Skip to main content

Abstract

In angiosperms a reduction of the gametophyte is manifest. After meiosis small gametophytes are formed with a low number of cells on a high level of differentiation. The microgametophyte produces two sperm cells and, in the macrogametophyte, one egg cell is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashley T (1972) Zygote shrinkage and subsequent development in some Hibiscus hybrids. Planta 108:303–317

    Google Scholar 

  • Baker HG (1973) Stigmatic exudates and pollination. In: Brandjes NMB, Linskens HF (eds) Pollination and disposal. Univ Nijmegen, pp 47–60

    Google Scholar 

  • Baker HG, Baker I (1979) Starch in angiosperm pollen grains and its evolutionary significance. Am J Bot 66:591–600

    Google Scholar 

  • Bell J, Hicks G (1976) Transmitting tissue in the pistai of tobacco: Light and electron microscopic observations. Planta 131:187–200

    Google Scholar 

  • Bredemeijer GMM (1974) Peroxidase activity and peroxidase isoenzyme composition in self-pollinated, cross-pollinated, and unpollinated styles of Nicotiana alata. Acta Bot Neerl 23:149–157

    CAS  Google Scholar 

  • Bredemeijer GMM (1979) The distribution of peroxidase isoenzymes, chlorogenic acid oxidase, and glucose-6-phosphate dehydrogenase in transmitting tissue and cortex ofNicotiana alata styles. Acta Bot Neerl 28:197–203

    CAS  Google Scholar 

  • Brewbaker JL, Kwack BH (1964) The calcium-ion and substances influencing pollen growth. In: Linskens HF (ed) Pollen physiology and fertilization. North-Holland, Amsterdam, pp 143–151

    Google Scholar 

  • Brouland M (1969) Recherches cytologiques sur la fécondation chez quelques Renonculacées. Rev Cytol Biol Vég 32:309–317

    Google Scholar 

  • Carniel K (1972) Elektronenmikroskopische Analyse der Pollenentwicklung von Heleocharis palustris. Oesterr Bot Z 120:223–234

    Google Scholar 

  • Cass DD (1972) Occurrence and development of a filiform apparatus in the egg of Plumbago capensis. Am J Bot 59:279–283

    Google Scholar 

  • Cass DD (1973) An ultrastructural and nomarski-interference study of sperms of barley. Can J Bot 51:601–605

    Google Scholar 

  • Cass DD, Jensen WA (1970) Fertilization in barley. Am J Bot 57:62–70

    Google Scholar 

  • Cass DD, Karas I (1974) Ultrastructural organization of the egg of Plumbago zeylanica. Protoplasma 81:49–62

    PubMed  CAS  Google Scholar 

  • Cass DD, Karas I (1975) Development of sperm cells in barley. Can J Bot 53:1051–1062

    Google Scholar 

  • Cass DD, Peteya DJ (1979) Growth of barley pollen tubes in vivo. Ultrastructural aspects of early tube growth in the stigmatic hair. Can J Bot 57:386–396

    Google Scholar 

  • Chandra S, Bhatnagar SP (1974) Reproductive biology of Triticum II. Pollen germination, pollen tube growth, and its entry into the ovule. Phytomorphology 24:211–217

    Google Scholar 

  • Chang PLY, Trevithick JR (1974) How important is secretion of exoenzymes through apical cell walls of fungi? Arch Microbiol 101:281–293

    PubMed  CAS  Google Scholar 

  • Chao ChY (1971) A periodic acid-Shiff s substance related to the directional growth of pollen tube into embryo sac in Paspalum ovules. Am J Bot 58:649–654

    Google Scholar 

  • Chao ChY (1977) Further cytological studies of a periodic acid-Shiff s substance in the ovules of Paspalum orbiculare and Paspalum congiflorum. Am J Bot 64:921–930

    Google Scholar 

  • Chao ChY (1979) Histochemical study of a PAS-substance in the ovules of Paspalum orbiculare and Paspalum longifolium. Phytomorphology 29:381–386

    Google Scholar 

  • Christ B (1959) Entwicklungsgeschichtliche und physiologische Untersuchungen über die Selbsterilität vonCardaminepratensis L. Z Bot 47:88–112

    CAS  Google Scholar 

  • Ciampolini F, Cresti M, Pacini E (1978) Caratteristiche ultrastrutturali ed istochimiche del tessuto trasmittente stilare di melo. Proc Symp „Fertilità delle piante da frutto”. Bologna, pp 544–551

    Google Scholar 

  • Clarke AE, Considine JA, Ward R, Knox RB (1977) Mechanism of pollination in Gladiolus: Roles of the stigma and pollen tube guide. Ann Bot 41:15–20

    Google Scholar 

  • Coccuci AE (1973) Orchid embryology: The membrane systems and the pollen tube growth. Caryologia 25:201–206

    Google Scholar 

  • Cocucci A, Fulvio TE di (1969) Sobre la naturaleza nuclear de los „Cuerpos X”. Kurtziana 5:317–323

    Google Scholar 

  • Cocucci A, Jensen WA (1969) Orchid embryology: Megagametophyte of Epidendrum scutella following fertilization. Am J Bot 56:629–640

    Google Scholar 

  • Coe GE (1954) Distribution of carbon-14 in ovules of Zephyranthes drummondii. Bot Gaz 115:342–346

    CAS  Google Scholar 

  • Cooper DC (1946) Double fertilization in Petunia. Am J Bot 33:54–57

    Google Scholar 

  • Coustaut D, Linskens HF, Moschetto Y, Delbart L (1978) Quelques aspects du métabolisme des glycosphingolipides des styles et du pollen chez Petunia hybrida, espicée auto-incompatible. Bull Soc Bot Fr 125:69–78

    Google Scholar 

  • Cresti M, Went JL van (1976) Callose deposition and plug formation in Petunia pollen tubes in situ. Planta 133:35–40

    Google Scholar 

  • Cresti M, Went JL van, Pacini E, Willemse MTM (1976 a) Ultrastructure of transmitting tissue of Ly-copersicon peruvianum style: Development and histochemistry. Planta 132:305–312

    Google Scholar 

  • Cresti M, Went JL van, Willemse MTM, Pacini E (1976 b) Fibrous masses and cell and nucleus movement in the pollen tube of Petunia hybrida. Acta Bot Neerl 25:381–383

    Google Scholar 

  • Cresti M, Pacini E, Ciampolini F, Sarfatti G (1977 a) Germination and early tube development in vitro of Lycopersiconperuvianum pollen: Ultrastructural features. Planta 136:239–247

    Google Scholar 

  • Cresti M, Ciampolini F, Pacini E (1977 b) Ultrastructural aspects of pollen tube growth inhibition after gamma irradiation in Lycopersicumperuvianum. Theor Appl Genet 49:297–303

    Google Scholar 

  • Cresti M, Ciampolini F, Pacini E (1978 a) Gamma irradiation of Prunus avium L. flower buds: Effects on stylar development — An ultrastructural study. Acta Bot Neerl 27:97–106

    Google Scholar 

  • Cresti M, Ciampolini F, Pacini E, Sarfatti G (1978 b) Phytoferritin in plastids of the style of Olea europaea L. Acta Bot Neerl 27:417–123

    Google Scholar 

  • Cresti M, Ciampolini F, Pacini E, Sarfatti G, Went JL van, Willemse MTM (1979 a) Ultrastructural differences between compatible and incompatible pollen tubes in the stylar transmitting tissue of Petunia hybrida. J Submicrosc Cytol 11:209–219

    Google Scholar 

  • Cresti M, Ciampolini F, Pacini E, Sarfatti G, Donini B (1979 b) Ultrastructural features of Prunus avium L. pollen tube in vivo. I. The compatible pollen tube. Caryologia 32:433–440

    Google Scholar 

  • D’Alascio-Deschamps R (1973) Modifications ultrastructurales liées à la fécondation chez le lin. Bull Soc Bot Fr 122:137–146

    Google Scholar 

  • Dashek WV, Thomas HR, Rosen WG (1971) Secretory cells of lily pistils. II. Electron microscope cytochemistry of canal cells. Am J Bot 58:909–920

    Google Scholar 

  • Delbart C, Linskens HF, Bris B, Moschetto Y, Coustaut D (1980 a) Analysis of glycosphingolipids of Petunia hybrida, a self-incompatible species. I. Composition in fatty acids and in long chain bases of pollen and unpollinated style. Dev Biol Proc 83:1–11

    Google Scholar 

  • Delbart C, Bris B, Linskens HF, Linder R, Coustaut D (1980 b) Analysis of glycosphingolipids of Petunia hybrida, a self-incompatible species. II. Evolution of the fatty acids composition after cross- and self-pollination. Dev Biol Proc 83:241–254

    CAS  Google Scholar 

  • Delbart C, Bris B, Linskens HF, Coustaut D (1980 c) Analysis of glycosphingolipids of Petunia hybrida, a self-incompatible species. III. Evolution of the chained bases after self- and cross-pollination. Dev Biol Proc 83:255–269

    CAS  Google Scholar 

  • Deurenberg JJM (1976) In vitro protein synthesis with polysomes from unpollinated, cross- and self-pollinatedPetunia ovaries. Planta 128:29–33

    CAS  Google Scholar 

  • Deurenberg JJM (1977) Differentiated protein synthesis with polysomes from Petunia ovaries before fertilization. Planta 133:201–206

    CAS  Google Scholar 

  • Diboll AG (1968) Fine structure development of the megagametophyte of Zea mays following fertilization. Am J Bot 55:787–806

    Google Scholar 

  • Diboll AG, Larson DA (1966) An electron microscopic study of the mature megagametophyte in Zea mays. Am J Bot 53:391–102

    PubMed  CAS  Google Scholar 

  • Dickinson HG, Lawson J (1975 a) Pollen tube growth in the stigma of Oenothera organensis following compatible and incompatible intraspecific pollinations. Proc R Soc Lond B Biol Sci 188:327–344

    Google Scholar 

  • Dickinson HG, Lawson J (1975 b) The growth of the pollen tube wall in Oenothera organensis. J Cell Sci 18:519–532

    CAS  Google Scholar 

  • Dickinson HG, Lewis D (1973) Cytochemical and ultrastructural differences between intraspecific compatible and incompatible pollination in Raphanus. Proc R Soc Lond B Biol Sci 183:21–38

    Google Scholar 

  • Dickinson HG, Lewis D (1975) Interaction between the pollen grain coating and the stigmatic surface during compatible and incompatible intraspecific pollinations in Raphanus. In: Duckett JG, Racey PA (eds) The biology of the male gamete. Biol J Linn Soc, vol 7, Suppl I. Academic Press, London, pp 165–175

    Google Scholar 

  • Dickinson HG, Moriarty J, Lawson J (1982) Pollen-pistil interaction in Lilium longiflorum: The role of the pistil in controlling pollen tube growth following cross- and self-pollinations. Proc R Soc Lond Biol Sci 215:45–62

    CAS  Google Scholar 

  • Dolstra O (1982) Synthesis and fertility of Brassicoraphanus and ways of transferring Raphanus characters to Brassica. Ph D Thesis, Agricult Univ, Wageningen PUDOC

    Google Scholar 

  • Donk JAWM van der (1975) Molecular biological aspects of the incompatible reaction in Petunia. Ph D Thesis, Univ Nijmegen

    Google Scholar 

  • Dumas C (1973) Contribution à l’étude cyto-physiologique du stigmate. III. Evolution et rôle du reticulum endoplasmique au cours de la sécrétion chez Forsythia intermedia; étude cytochimique. Z Pflanzenphysiol 70:119–130

    Google Scholar 

  • Dumas C (1974) Some aspects of stigmatic secretion in Forsythia. In: Linskens HF (ed) Fertilization in higher plants. North-Holland, Amsterdam, pp 119–126

    Google Scholar 

  • Dumas C (1978) Stigmates sécréteurs et lipides neutres sécrétés. Bull Soc Bot Fr 125:61–68

    Google Scholar 

  • Dumas C, Gaude T (1981) Stigma-pollen recognition: A new look. Act Soc Bot Pol 50:235–247

    Google Scholar 

  • Engels FM (1974) Function of golgi vesicles in relation to cell wall synthesis in germinating Petunia pollen. II. Chemical composition of golgi vesicles and pollen tube wall. Acta Bot Neerl 23:81–89

    CAS  Google Scholar 

  • Erdelskâ O (1974) Contribution to the study of fertilization in the living embryo sac. In: Linskens HF(ed) Fertilization in higher plants. North-Holland, Amsterdam, pp 191–195

    Google Scholar 

  • Fisher DB, Jensen WA (1969) Cotton embryogenesis: Identification as nuclei, of the X-bodies in the degenerated synergid. Planta 84:122–133

    Google Scholar 

  • Franke WW, Herth W, Woude WJ van der, Morré DJ (1972) Tubular and filamentous structures in pollen tubes: Possible involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105:317–341

    Google Scholar 

  • Frankel R, Galun E (1977) Pollination mechanisms, reproduction, and plant breeding. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gerassimova-Navashina H (1960) A contribution to the cytology of fertilization in flowering plants. Nucleus (Calcutta) 3:111–120

    Google Scholar 

  • Gilissen LJW (1976) The role of the style as a sense-organ in relation to wilting of the flower. Planta 131:201–202

    Google Scholar 

  • Gilissen LJW (1977) Style-controlled wilting of the flower. Planta 133:275–280

    Google Scholar 

  • Hagemann R (1979) Genetics and molecular biology of plastids of higher plants. Stadler Genet Symp 11:91–116

    CAS  Google Scholar 

  • Herrero M, Dickinson HG (1979) Pollen-pistil incompatibility in Petunia hybrida: Changes in the pistil following compatible and incompatible intraspecific crosses. J Cell Sci 36:1–18

    CAS  Google Scholar 

  • Herrero M, Dickinson HG (1980) Ultrastructural and physiological differences between buds and mature flowers of Petunia hybrida prior to and following pollination. Planta 148:138–145

    Google Scholar 

  • Herth W (1978) Ionophore A 23187 stops tip growth, but not cytoplasmic streaming, in pollen tubes ofLilium longiflorum. Protoplasma 96:275–282

    CAS  Google Scholar 

  • Heslop-Harrison J (1975 a) Incompatibly and the pollen-stigma interaction. Annu Rev Plant Physiol 26:403–125

    CAS  Google Scholar 

  • Heslop-Harrison J (1975 b) Male gametophyte selection and the pollen-stigma interaction. In: Mulcahy DL (ed) Gamete competition in plants and animals. North-Holland/American Elsevier, New York, pp 177–180

    Google Scholar 

  • Heslop-Harrison J (1978) Cellular recognition systems in plants. Arnold, London

    Google Scholar 

  • Heslop-Harrison J (1979) An interpretation of the hydrodynamics of pollen. Am J Bot 66:737–743

    Google Scholar 

  • Heslop-Harrison J (1982) Pollen-stigma interaction and cross-incompatibility in the grasses. Science (Wash DC) 215:1358–1364

    CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1975) Enzymic removal of the proteinaceous pellicle of the stigma papilla prevents pollen tube entry in the Caryophyllaceae. Ann Bot 39:163–165

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1980) The pollen-stigma interaction in the grasses. I. Fine-structure and cytochemistry of the stigmas of Hordeum and Seeale. Acta Bot Neerl 29:261–276

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1982) Pollen-stigma interaction in Leguminosae: Constituents of the stylar fluid and stigma secretion of Trifolium pratense L. Ann Bot 49:729–735

    CAS  Google Scholar 

  • Heslop-Harrison J, Knox RB, Howlett B (1973) Pollen-wall proteins: “gametophytic” and “sporophytic” fractions in the pollen walls of the Malvaceae. Ann Bot 37:403–112

    CAS  Google Scholar 

  • Heslop-Harrison J, Knox RB, Heslop-Harrison Y (1974) Pollen-wall proteins: Exine-held fractions associated with the incompatibility response in Cruciferae. Theor Appl Genet 44:133–137

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Barber J (1975 a) The stigma surface in incompatibility responses. Proc R Soc Lond B Biol Sci 188:287–297

    Google Scholar 

  • Heslop-Harrison J, Knox RB, Heslop-Harrison Y, Mattisson O (1975 b) Pollen-wall proteins: Emission and role in incompatibility responses. In: Duckett JC, Racey PA (eds) The biology of the male gamete. Academic Press, London, pp 187–204

    Google Scholar 

  • Heslop-Harrison Y (1977) The pollen-stigma interaction: Pollen-tube penetration in Crocus. Ann Bot 41:913–922

    Google Scholar 

  • Heslop-Harrison Y (1981) Stigma characteristics and angiosperm taxonomy. Norw J Bot 1:401–420

    Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258

    Google Scholar 

  • Hoefert LL (1969 a) Ultrastructure of Beta pollen I. Cytoplasmic constituents. Am J Bot 56:363–368

    Google Scholar 

  • Hoefert LL (1969 b) Fine structure of sperm cells in pollen grains of Beta. Protoplasma 68:237–240

    Google Scholar 

  • Hoefert LL (1971) Pollen grain and sperm cell ultrastructure in Beta. In: Heslop-Harrison J (ed) Pollen: Development and physiology. Butterworths, London, pp 68–69

    Google Scholar 

  • Hoekstra FA (1979) Mitochondrial development and activity of binucleate and trinucleate pollen during germination in vitro. Planta 145:25–36

    CAS  Google Scholar 

  • Hu SY, Zhu Ch (1979) The fusion of male and female nuclei in fertilization of higher plants. Acta Bot Sin 21:1–15

    Google Scholar 

  • Jensen WA (1963) Cell development during plant embryogenesis. In: Meristems and differentiation. Brookhaven Symp Biol 16:179–202

    Google Scholar 

  • Jensen WA (1964) Observations on the fusion of nuclei in plants. J Cell Biol 23:669–672

    PubMed  CAS  Google Scholar 

  • Jensen WA (1965) The ultrastructure and histochemistry of the synergids of cotton. Am J Bot 52:238–256

    PubMed  CAS  Google Scholar 

  • Jensen WA (1968 a) Cotton embryogenesis: The zygote. Planta 79:346–366

    Google Scholar 

  • Jensen WA (1968 b) Cotton embryogenesis: Polysome formation in the zygote. J Cell Biol 36:403–406

    PubMed  CAS  Google Scholar 

  • Jensen WA (1972) The embryo sac and fertilization in angiosperms. Harold L Lyon Arbor Lect 3:1–32

    CAS  Google Scholar 

  • Jensen WA, Fisher DB (1967) Cotton embryogenesis: Double fertilization. Phytomorphology 17:261–269

    Google Scholar 

  • Jensen WA, Fisher DB (1968) Cotton embryogenesis: The entrance and discharge of the pollen tube in the embryo sac. Planta 78:158–183

    Google Scholar 

  • Jensen WA, Fisher DB (1969) Cotton embryogenesis: The tissues of the stigma and style and their relation to the pollen tube. Planta 84:97–121

    Google Scholar 

  • Jensen WA, Fisher DB (1970) Cotton embryogenesis: The pollen tube in the stigma and style. Protoplasma 69:215–235

    Google Scholar 

  • Jensen WA, Schulz P, Ashton ME (1977) An ultrastructural study of early endosperm development and synergid changes in unfertilized cotton ovules. Planta 133:179–189

    Google Scholar 

  • Kapil RN, Bhatnagar AK (1975) A fresh look at the process of double fertilization in angiosperms. Phytomorphology 25:334–368

    Google Scholar 

  • Kapil RN, Vasil IK (1963) Ovule. In: Maheshwari P (ed) Recent advances in the embryology of angiosperms. Intl Soc Plant Morphologists, Univ Dehli, pp 41–67

    Google Scholar 

  • Karas I, Cass DD (1976) Ultrastructural aspects of sperm cell formation in rye: Evidence for cell-plate involvement in generative cell division. Phytomorphology 26:36–45

    Google Scholar 

  • Knox RB (1973) Pollen wall proteins: Pollen-stigma interactions in ragweed and Cosmos (Compositae). J Cell Sci 12:421–443

    CAS  Google Scholar 

  • Knox RB, Heslop-Harrison J, Heslop-Harrison Y (1975) Pollen wall proteins: Localization and characterization of gametophytic and sporophytic fractions. In: Duckett JC, Racey PA (eds) The biology of the male gamete. Biol J Linn Soc, vol 7, Suppl I. Academic Press, London, pp 177–187

    Google Scholar 

  • Konar RN, Linskens HF (1966 a) The morphology and anatomy of the stigma ofPetunia hybrida. Planta 71:356–371

    Google Scholar 

  • Konar RN, Linskens HF (1966 b) Physiology and biochemistry of the stigma fluid ofPetunia hybrida. Planta 71:372–387

    CAS  Google Scholar 

  • Korobova SN (1974) On the behaviour of sperms in the process of fertilization of higher plants. In: Linskens HF (ed) Fertilization in higher plants. North-Holland, Amsterdam, pp 261–270

    Google Scholar 

  • Kroh M (1967) Bildung und Transport des Narbensekrets von Petunia hybrida. Planta 77:250–260

    Google Scholar 

  • Kroh M (1973) Nature of the intercellular substance of stylar transmitting tissue. In: Loewus F (ed) Biogenesis of plant cell wall polysaccharides. Academic Press, New York, pp 195–205

    Google Scholar 

  • Kroh M, Brakel CHJ van (1973) Incorporation of label into intercellular substance of stylar transmitting tissue fromPetunia pistils labelled with tritiated myo-inositol. An electromicroscopic autoradiographic study. Acta Bot Neerl 22:106–111

    CAS  Google Scholar 

  • Kroh M, Helsper JPFG (1974) Transmitting tissue and pollen tube growth. In: Linskens HF (ed) Fertilization in higher plants. North-Holland, Amsterdam, pp 167–178

    Google Scholar 

  • Kroh M, Gorissen MH, Pfahler PL (1979) Ultrastructural studies on styles and pollen tubes ofZeamays L. General survey on pollen tube growth in vivo. Acta Bot Neerl 28:113–118

    Google Scholar 

  • Labarca C, Kroh M, Loewus F (1970) The composition of stigmatic exudate from Lilium longiflorum. Labelling studies with myo-inositol, d-glucose and L-proline. Plant Physiol (Bethesda) 46:150–156

    CAS  Google Scholar 

  • Larson D (1965) Fine structural changes in the cytoplasm of germinating pollen. Am J Bot 52:139–154

    PubMed  CAS  Google Scholar 

  • Linder R, Linskens HF (1972) Evolution des acides aminés dans le style d’Oenothera missouriensis vierge, autopollinisé et xénopollinisé. Theor Appl Genet 42:125–129

    CAS  Google Scholar 

  • Linskens HF (1968) Egg-sperm interactions in higher plants. Acc Naz Lincei 104:47–60

    Google Scholar 

  • Linskens HF (1973) Activation of the ovary. Caryologia 25:27–11

    Google Scholar 

  • Linskens HF (1974 a) Translocation phenomena in the Petunia flower after cross- and self-pollination. In: Linskens HF (ed) Fertilization in higher plants. North-Holland, Amsterdam, pp 285–292

    Google Scholar 

  • Linskens HF (1974 b) Some observations on the growth of the style. Incomp News Lett 4:4–15

    Google Scholar 

  • Linskens HF (1974c) Study of growth of Petunia styles. Fyziologiya Rast 21:1059–1064

    CAS  Google Scholar 

  • Linskens HF (1975 a) Incompatibility in Petunia. Proc R Soc Lond B Biol Sci 188:299–311

    Google Scholar 

  • Linskens HF (1975 b) The physiological basis of incompatibility in angiosperms. In: Duckett JG, Racey PA (eds) The biology of the male gamete. Biol J Linn Soc, vol 7, Suppl I. Academic Press, London, pp 143–152

    Google Scholar 

  • Linskens HF (1976 a) Specific interactions in higher plants. In: Wood RKS, Graniti A (eds) Specificity in plant diseases. Plenum, New York, pp 311–325

    Google Scholar 

  • Linskens HF (1976b) Stigmatic responses. In: Vardar Y, Sheikh KH, Oztürk MA (eds) Proc 3rd MPP Meeting Ege Univ Bornova, Izmir, pp 1–12

    Google Scholar 

  • Linskens HF (1980 a) Physiology of fertilization and fertilization barriers in higher plants. In: Subtelny S, Wessels NK (eds) The cell surface. Mediator of developmental process. Academic Press, London, pp 113–125

    Google Scholar 

  • Linskens HF (1980 b) Befruchtungs-Barrieren bei höheren Pflanzen. Naturwiss Rundsch 33:11–20

    Google Scholar 

  • Linskens HF, Heinen W (1962) Cutinase Nachweis in Pollen. Z Bot 50:338–347

    CAS  Google Scholar 

  • Linskens HF, Kroh M (1970) Regulation of pollen tube growth. In: Moscona AA, Monroy A (eds) Current topics in developmental biology, vol 5. Academic Press, New York, pp 89–113

    Google Scholar 

  • Linskens HF, Linder R, Salden M, Havez R, Randoux A, Laniez D, Coustaut D (1970) Etude des glycoprotéines et glycannes-hydrolases au cours de la pollinisation chez Petunia hybrida auto-incompatible. Bull Soc Pharm 1:1–16

    Google Scholar 

  • Loewus F, Labarea C (1973) Pistil secretion product and pollen tube wall formation. In: Loewus F (ed) Biogenesis of plant cell wall polysaccharides. Academic Press, New York, pp 175–193

    Google Scholar 

  • Lord EM, Webster BD (1979) The stigmatic exudate of Phaseolus vulgaris L. Bot Gaz 140:266–271

    CAS  Google Scholar 

  • Luxova M (1967) Fertilization of barley (Hordeum distichum L.). Biol Plant (Prague) 9:301–307

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Maheshwari P (ed) (1963) Recent advances in the embryology of angiosperms. Intl Soc Plant Morphologists, Univ Delhi

    Google Scholar 

  • Mascarenhas JP (1973) Pollen tube chemotropism. In: Pérez-Miravette A (ed) Behaviour of micro-organisms. Plenum, London New York, pp 62–69

    Google Scholar 

  • Mascarenhas JP (1975) The biochemistry of angiosperm pollen development. Bot Rev 41:260–314

    Google Scholar 

  • Mascarenhas JP, Machlis L (1962 a) The pollen tube chemotropic factor fromAntirrhinum majus: Bioassay, extraction, and partial purification. Am J Bot 49:482–489

    CAS  Google Scholar 

  • Mascarenhas JP, Machlis L (1962 b) The hormonal control of directional growth of pollen tubes. Vitam Horm 20:347–371

    CAS  Google Scholar 

  • Mascarenhas JP, Machlis L (1964) Chemotropic response of the pollen of Antirrhinum majus to calcium. Plant Physiol (Bethesda) 39:70–77

    CAS  Google Scholar 

  • Miki-Hirosige H (1964) Tropism of pollen tubes to the pistils. In: Linskens HF (ed) Pollen physiology and fertilization. North-Holland, Amsterdam, pp 152–158

    Google Scholar 

  • Miki-Hirosige H, Nakamura S (1982) Process of metabolism during pollen tube wall formation. J Electron Microsc 31:51–62

    Google Scholar 

  • Maze J, Lin SC (1975) A study of the mature megagametophyte of Stipa elmeri. Can J Bot 53:2985–2977

    Google Scholar 

  • Mogensen HL (1972) Fine structure and composition of the egg apparatus before and after fertilization inQuercus gambelii: The functional ovule. Am J Bot 59:931–941

    Google Scholar 

  • Navashin MS (1969) On the nature of the movement of the generative cell in the pollen tube and the problem of the localization of cell elements. Rev Cytol Biol Veg 32:141–148

    Google Scholar 

  • Nettancourt D de (1977) Incompatibility in angiosperms. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nettancourt D de, Devreux H, Laneri N, Pacini E, Cresti M, Sarfatti G (1973 a) Ultrastructural aspects of bilateral interspecific incompatibility between Lycopersicum peruvianum and L. esculentum. Caryologia 25:207–217

    Google Scholar 

  • Nettancourt D de, Devreux M, Bozzini A, Cresti M, Pacini E, Sarfatti G (1973 b) Ultrastructural aspects of the self-incompatibility mechanism inLycopersicum peruvianum Mill. J Cell Sci 12:403–419

    Google Scholar 

  • Nettancourt D de, Devreux M, Laneri U, Cresti M, Pacini E, Sarfatti G (1974) Genetical and ultra-structural aspects of self- and cross-incompatibility in interspecific hybrids between self-compatible Lycopersicum esculentum and self-incompatible L. peruvianum. Theor Appl Genet 44:278–288

    Google Scholar 

  • Newcomb W (1973 a) The development of the embryo sac of the sunflower Helianthus annuus before fertilization. Can J Bot 51:863–878

    Google Scholar 

  • Newcomb W (1973 b) The development of the embryo sac of the sunflower Helianthus annuus after fertilization. Can J Bot 51:879–890

    Google Scholar 

  • Nishio T, Hinata K (1977) Positive PAS-reaction of S-specific proteins in stigma of Brassica oleracea L. Incomp News Lett 8:31–33

    Google Scholar 

  • Noack R (1960) Die zwittrigen und eingeschlechtlichen Blüten von Begonia cathayana. 1. Die chemotropische Reaktionsfähigkeit der Pollenschläuche auf die Narbenstoffe der Blüten. Z Bot 48:463–487

    Google Scholar 

  • Norstog K (1972) Early development of the barley embryo: Fine structure. Am J Bot 59:123–132

    Google Scholar 

  • Ockendon DJ (1972) Pollen tube growth and the site of the incompatibility reaction in Brassica oleracea. New Phytol 71:519–522

    Google Scholar 

  • Owens SJ, Kimmins FM (1981) Stigma morphology in Commelinaceae. Ann Bot 47:771–783

    Google Scholar 

  • Pluym JE van der (1964) An electron microscopic investigation of the filiform apparatus in the embryo sac ofTorenia fournieri. In: Linskens HF (ed) Pollen physiology and fertilization. North-Holland, Amsterdam, pp 6–16

    Google Scholar 

  • Preil W, Keyser D (1975) Pollen germination on exposed ovules in Begonia semper florens. In: Mulcahy DL (ed) Gamete competition in plants and animals. North-Holland, Amsterdam, pp 219–226

    Google Scholar 

  • Reiss HD, Herth W (1978) Visualization of the Ca2+-gradient in growing pollen tubes of Lilium longiflorum with chlorotetracycline fluorescence. Protoplasma 97:373–377

    Google Scholar 

  • Roberts IN, Stead DA, Dickinson HG (1979 a) No fundamental changes in lipids of the pollen grain coating of Brassica oleracea following either self- or cross-pollinations. Incomp News Lett 11:77–83

    Google Scholar 

  • Roberts IN, Stead DA, Ockendon DJ, Dickinson HG (1979 b) A glycoprotein associated with the acquisition of the self-incompatibility system by maturing stigmas of Brassica oleracea. Planta 146:179–183

    CAS  Google Scholar 

  • Roggen H (1974) Pollen washing influences (in)compatibility in Brassica oleracea varieties. In: Linskens HF (ed) Fertilization in higher plants. North-Holland, Amsterdam, pp 273–278

    Google Scholar 

  • Rosen WG (1961) Studies on pollen-tube chemotropism. Am J Bot 48:889–895

    CAS  Google Scholar 

  • Rosen WG (1964) Chemotropism and fine structure of pollen tubes. In: Linskens HF (ed) Pollen physiology and fertilization. North-Holland, Amsterdam, pp 159–166

    Google Scholar 

  • Rosen WG (1971 a) Pollen tube growth and fine structure. In: Heslop-Harrison J (ed) Pollen: Development and physiology. Butterworth, London, pp 177–189

    Google Scholar 

  • Rosen WG (1971b) Pistil-pollen interactions in Lilium. In: Heslop-Harrison J (ed) Pollen: Development and physiology. Butterworth, London, pp 239–261

    Google Scholar 

  • Rosen WG (1975) Pollen-pistil interactions. In: Duckett JG, Racey PA (eds) The biology of the male gamete. Biol J Linn Soc, vol 7, Suppl I. Academic Press, London, pp 153–164

    Google Scholar 

  • Russell SD (1980) Participation of male cytoplasm during gamete fusion in an angiosperm, Plumbago zeylanica. Science (Wash DC) 210:200–201

    PubMed  CAS  Google Scholar 

  • Russell SD (1981) Structure and quantitative cytology of male gametes of Plumbago zeylanica L. Abstr No 042202, XIII Intl Bot Congr, Sydney, p 61

    Google Scholar 

  • Russell SD (1982) Fertilization in Plumbago zeylanica: Entry and discharge of the pollen tube in the embryo sac. Can J Bot 60:2219–2230

    Google Scholar 

  • Russell SD (1983) Fertilization in Plumbago zeylanica: Gametic fusion and fate of the male cytoplasm. Am J Bot 70:416–434

    Google Scholar 

  • Russell SD, Cass DD (1981) Ultrastructure of fertilization in Plumbago zeylanica. Acta Soc Bot Pol 50:185–190

    Google Scholar 

  • Sanger JW, Jackson WT (1971 a) Fine structure study of pollen development inHaemanthus katherinae Baker. II. Microtubules and elongation of the generative cells. J Cell Sci 8:303–315

    CAS  Google Scholar 

  • Sanger JW, Jackson WT (1971b) Fine structure study of the pollen development in Haemanthus katherinae Baker. III. Changes in organelles during development of the vegetative cell. J Cell Sci 8:317–329

    CAS  Google Scholar 

  • Sassen MMA (1974) The stylar transmitting tissue. Acta Bot Neerl 23:99–108

    Google Scholar 

  • Sastri DC, Shivanna KR (1980) Electrophoretic patterns of proteins and isozymes in developing pistils of Petunia hybrida. Incomp News Lett 12:24–29

    Google Scholar 

  • Schildknecht H, Benoni H (1963) Über die Chemie der Anziehung von Pollenschläuchen durch die Samenanlagen von Oenotheren. Z Naturforsch 18:45–54

    Google Scholar 

  • Schulz R, Jensen WA (1968 a) Capsella embryogenesis: The synergids before and after fertilization. Am J Bot 55:541–552

    Google Scholar 

  • Schulz R, Jensen WA (1968 b) Capsella embryogenesis: The egg, zygote, and young embryo. Am J Bot 55:807–819

    Google Scholar 

  • Schulz P, Jensen WA (1973) Capsella embryogenesis: The central cell. J Cell Sci 12:741–763

    CAS  Google Scholar 

  • Schulz P, Jensen WA (1974) Capsella embryogenesis: The development of the free-nuclear endosperm. Protoplasma 80:183–205

    Google Scholar 

  • Schulz P, Jensen WA (1977) Cotton embryogenesis: The early development of the free-nuclear endosperm. Am J Bot 64:384–394

    Google Scholar 

  • Sedgley M (1976) Control by the embryo sac over pollen tube growth in the style of the avocado (Persea americana Mill). New Phytol 77:149–152

    Google Scholar 

  • Sedgley M (1977) Reduced pollen tube growth and the presence of callose in the pistil of the male floral stage of the avocado. Sci Hortic (Canterbury) 7:27–36

    Google Scholar 

  • Sedgley M, Buttrose MS (1978) Structure of the stigma and style of the avocado. Aust J Bot 26:663–682

    Google Scholar 

  • Shivanna KR (1978) Elution of wall-bound proteins does not affect pollen germination and pollen tube growth in vitro in Vicia faba. Incomp News Lett 10:40–42

    Google Scholar 

  • Shivanna KR (1980) Some correlations between the cytomorphology of the style and stigma and the details of pollen-pistil interaction. Incomp News Lett 12:16–23

    Google Scholar 

  • Shivanna KR (1982) Pollen-pistil interaction and control of fertilization. In: Johri BM (ed) Experimental embryology of vascular plants. Springer, Heidelberg, pp 132–174

    Google Scholar 

  • Shivanna KR, Heslop-Harrison J (1981) Membrane state and pollen viability. Ann Bot 47:759–770

    Google Scholar 

  • Shivanna KR, Sastri DC (1981) Stigma-surface esterase activity and stigma receptivity in some taxa characterized by wet stigmas. Ann Bot 47:53–64

    CAS  Google Scholar 

  • Shivanna KR, Heslop-Harrison Y, Heslop-Harrison J (1978 a) The pollen-stigma interaction: Bud pollination in the Cruciferae. Acta Bot Neerl 27:107–119

    Google Scholar 

  • Shivanna KR, Heslop-Harrison Y, Heslop-Harrison J (1978 b) Inhibition of the pollen tube in the self-incompatibility response of grasses. Incomp News Lett 10:5–7

    Google Scholar 

  • Shivanna KR, Johri BM, Sastri DC (1979) Development and physiology of angiosperm pollen. Today and Tomorrow’s, New Delhi

    Google Scholar 

  • Shivanna KR, Heslop-Harrison Y, Heslop-Harrison J (1982) The pollen-stigma interaction in the grasses. III. Features of the self-incompatibility response. Acta Bot Neerl 31:307–319

    Google Scholar 

  • Singh AP, Mogensen HL (1975) Fine structure of the zygote and early embryo in Quer eus gambelii. Am J Bot 62:105–115

    Google Scholar 

  • Spanjers AW (1978) Voltage variation in Lilium longiflorum pistils induced by pollination. Experientia (Basel) 34:36–37

    Google Scholar 

  • Stanley RG (1971) Pollen chemistry and tube growth. In: Heslop-Harrison J (ed) Pollen: Development and physiology. Butterworth, London, pp 131–155

    Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: Biology, biochemistry, management. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stead AD, Roberts IN, Dickinson HG (1979) Pollen-pistil interaction in Brassica oleracea. Planta 146:211–216

    Google Scholar 

  • Stead AD, Roberts IN, Dickinson HG (1980) Pollen-stigma interaction in Brassica oleracea: The role of stigmatic proteins in pollen grain adhesion. J Cell Sci 42:417–423

    CAS  Google Scholar 

  • Steffen K (1951) Zur Kenntnis des Befruchtungsvorganges beiImpatiens glanduligera Lindl. Cytologische Studien am Embryosack der Balsamineen. Planta 39:175–244

    Google Scholar 

  • Steffen K (1963) Fertilization. In: Maheshwari P (ed) Recent advances in the embryology of angiosperms. Intl Soc Plant Morphologists, Univ Dehli, pp 105–133

    Google Scholar 

  • Thomas SM, Murray BG (1975) A new site for the self-incompatibility reaction in the Gramineae. Incomp News Lett 6:22–23

    Google Scholar 

  • Townsend CE (1971) Advances in the study of incompatibility. In: Heslop-Harrison J (ed) Pollen: Development and physiology. Butterworth, London, pp 281–309

    Google Scholar 

  • Tsao TH (1949) A study of chemotropism of pollen tubes in vitro. Plant Physiol (Bethesda) 20:494–504

    Google Scholar 

  • Vasil IK (1973) The new biology of pollen. Naturwissenschaften 60:247–253

    PubMed  CAS  Google Scholar 

  • Vasil IK (1974) The histology and physiology of pollen germination and pollen tube growth on the stigma and in the style. In: Linskens HF (ed) Fertilization in higher plants. North-Holland, Amsterdam, pp 105–118

    Google Scholar 

  • Vasil IK, Johri MM (1964) The style, stigma, and pollen tube. Phytomorphology 14:352–369

    Google Scholar 

  • Vasilev AE (1970) Ultrastructure of stigmatoid cells in Lilium. Sov Plant Physiol 19:1035–1044

    Google Scholar 

  • Vazart J (1969 a) Organisation et ultrastructure du sac embryonnaire du lin (Linum usitatissimum L.). Rev Cytol Biol Vég 32:227–240

    Google Scholar 

  • Vazart J (1969 b) Degeneration of a synergid and pollen tube entrance into the embryo sac of Linum usitatissimum L. Ann Univ ARERS 9:89–97

    Google Scholar 

  • Vazart J (1970) Aspects infrastructuraux de la reproduction sexuée chez le lin. Derniers stades de la différenciation du pollen. Structure inframicroscopique de la cellule génératrice et des gametes. Rev Cytol Biol Vég 33:289–310

    Google Scholar 

  • Vijayaraghavan MR, Jensen WA, Ashton ME (1972) Synergids of Aquilegia formosa. Their histochemistry and ultrastructure. Phytomorphology 22:144–159

    Google Scholar 

  • Vithanage HIMV, Heslop-Harrison J (1979) The pollen-stigma interaction: Fate of fluorescent-labelled pollen-wall proteins on the stigma surface in rye (Seeale cereale). Ann Bot 43:113–114

    Google Scholar 

  • Vries H de (1900) Het leven der bloem. Willink, Haarlem, p 142

    Google Scholar 

  • Weisenseel MH, Nuccitelli R, Jaffé LF (1975) Large electrical currents traverse growing pollen tubes. J Cell Biol 66:556–567

    PubMed  CAS  Google Scholar 

  • Went JL van (1970 a) The ultrastructure of the synergids of Petunia. Acta Bot Neerl 19:121–132

    Google Scholar 

  • Went JL van (1970 b) The ultrastructure of the fertilized embryo sac of Petunia. Acta Bot Neerl 19:468–480

    Google Scholar 

  • Went JL van (1974) The ultrastructure of Impatiens pollen. In: Linskens HF (ed) Fertilization in higher plants. North-Holland, Amsterdam, pp 81–88

    Google Scholar 

  • Went JL van, Linskens HF (1967) Die Entwicklung des sogenannten „Fadenapparatus” im Embryosack von Petunia hybrida. Gen Breed Res 37:51–56

    Google Scholar 

  • Wilms HJ (1974) Branching of pollen tubes in spinach. In: Linskens HF (ed) Fertilization in higher plants. North-Holland, Amsterdam, pp 155–160

    Google Scholar 

  • Wilms HJ (1980 a) Ultrastructure of the developing embryo sac of spinach. Acta Bot Neerl 29:243–260

    Google Scholar 

  • Wilms HJ (1980 b) Ultrastructure of the stigma and style of spinach in relation to pollen germination and pollen tube growth. Acta Bot Neerl 29:33–47

    Google Scholar 

  • Wilms H J, Van Aelst AC (1978) Fertilization in spinach: The pathway of the pollen tubes in the style. Bull Soc Bot Fr 125:243–247

    Google Scholar 

  • Woittiez RD, Willemse MTM (1979) Sticking of pollen on stigmas: The factors and a model. Phytomorphology 29:57–63

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Went, J.L., Willemse, M.T.M. (1984). Fertilization. In: Johri, B.M. (eds) Embryology of Angiosperms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69302-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69302-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69304-5

  • Online ISBN: 978-3-642-69302-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics