Application of Graph Theory in Modelling of Biological Systems

  • E. Godehardt
  • O. Richter
Conference paper
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 71)


The aim of scientific research in biology and medicine is to describe and - perhaps - understand structural functional relations between elements of given systems. In this survey, it is shown how to use graph theory for modelling and analyzing biological systems. Some examples of its application are presented. Every binary structural relation can be described by a graph. Calculus of weighted directed graphs can be used to model functional relations directly. Consequently, the theoretical model of a graph can give both a first insight into the structure as well as a description of the functional relations of the elements of biological systems.


Path Coefficient Functional Relation Weighted Directed Graph Vertex Base Weighted Digraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyarsky, L.L.: Neural net analogs of rhythmic activity in the nervous system. Cur-rents Mod. Biol. 1 (1967), 39–46Google Scholar
  2. Burton, T.A.(ed.): Modeling and Differential Equations in Biology. Marcel Dekker, New York - Basel 1980MATHGoogle Scholar
  3. Dörfel, H.: Schätzen von Pfadkoeffizienten. Biom. Z. 14 (1972), 209–226MATHCrossRefGoogle Scholar
  4. Ferrari, Th.J.: Auswertung biologischer Kettenprozesse mit Hilfe von Pfadkoeffizien-ten. Biom. Z. 6 (1964), 89 ppCrossRefGoogle Scholar
  5. von Foerster, H.: Computation in neural nets. Currents Mod. Biol. 1 (1967), 47–93Google Scholar
  6. Laue, R.: Elemente der Graphentheorie und ihre Anwendung in den biologischen Wissen-schaften. Vieweg, Braunschweig 1971Google Scholar
  7. Möller, D., Popovic, D., Thiele, G.: Modeling, Simulation and Parameter-Estimating of the Human Cardiovascular System. Vieweg, Braunschweig 1983Google Scholar
  8. Rashevsky, N.: Topology and life. Bull. Math. Biophys. 16 (1954), 317 ppMathSciNetCrossRefGoogle Scholar
  9. Rescigno, A., Segre, G.: Drug and Tracer Kinetics. Blaisdell, Waltham, 1966Google Scholar
  10. Richter, O.: Mathematische Modelle für die klinische Forschung: enzymatische und pharmakokinetische Prozesse. Springer, Berlin - Heidelberg - New York 1982Google Scholar
  11. Rosen, R.: The representation of biological systems from the standpoint of the theory of categories. Bull. Math. Biophys. 20 (1958), 317 ppMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • E. Godehardt
    • 1
  • O. Richter
    • 2
  1. 1.KölnGermany
  2. 2.BonnGermany

Personalised recommendations