Celestial and Terrestrial Navigation: Human Strategies — Insect Strategies

  • Rüdiger Wehner


I admit at the outset that the following account will be a somewhat biased treatment, in that there is an inordinate emphasis on my own work and that of my friends, and on personal ways of looking at the problems outlined in the title. Encouraged by the editors’ proposal, I shall not refrain from including numerous speculations and inferences on topics which might appear controversial. The possibility of presenting such personal views rather than providing a comprehensive review has added excitement to this study. Nevertheless, I hope not only to make my particular case but also to illustrate the role that painstaking behavioural analyses can play in deriving and testing hypotheses within the field of neurobiology.


Inertial Navigation System Dead Reckoning Human Strategy Compass Bearing Visual Spatial Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aveni AF (1981) Tropical archeoastronomy. Science 213: 161–171PubMedCrossRefGoogle Scholar
  2. Bellwood PS (1980) The peopling of the Pacific. Sci Am 243 /5: 138–147Google Scholar
  3. Birr HD, Kuschinsky S, Uhlig L (1978) Leitfaden der Navigation, Terrestrische Navigation. 3. Aufl. Transpress, BerlinGoogle Scholar
  4. Brines MC, Gould JL (1979) Bees have rules. Science 206: 571–573Google Scholar
  5. Cartwright BA, Collett TS (1979) How honey-bees know their distance from a near-by visual landmark. J Exp Bio! 82: 367–372Google Scholar
  6. Cartwright BA, Collett TS (1982) How honey bees use landmarks to guide their return to a food source. Nature 295: 560–564CrossRefGoogle Scholar
  7. Collett TS, Land MF (1975) Visual spatial memory in a hoverfly. J Comp Physiol 100: 59–84CrossRefGoogle Scholar
  8. Finney BR (ed) (1976) Pacific navigation and voyaging. Polynesian Society Memoir No 39, Polynesian Society Inc, WellingtonGoogle Scholar
  9. Frisch K v (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148PubMedCrossRefGoogle Scholar
  10. Gladwin T (1970) East is a big bird. Harvard Univ Press, Cambridge MAGoogle Scholar
  11. Goodenough WH (1953) Native astronomy in the Central Carolines. Univ Museum, PhiladelphiaGoogle Scholar
  12. Heinrich B (1976) The foraging specializations of individual bumblebees. Ecol Monogr 46: 105–128CrossRefGoogle Scholar
  13. Hill JC, Utegaard TF, Riordan G (1958) Dutton’s navigation and piloting. US Naval Institute, AnnapolisGoogle Scholar
  14. Hölldobler B (1980) Canopy orientation: A new kind of orientation in ants. Science 210: 86–88PubMedCrossRefGoogle Scholar
  15. Janzen DH (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171: 203–205PubMedCrossRefGoogle Scholar
  16. Lewis D (1972) We, the navigators. The ancient art of landfinding in the Pacific. Australian National Univ Press, CanberraGoogle Scholar
  17. Neisser U (1966) Cognitive psychology. Appleton-Century Crofts, New YorkGoogle Scholar
  18. Rau P (1929) Experimental studies in the homing of carpenter and mining bees. J Comp Psychol 9: 35–70CrossRefGoogle Scholar
  19. Rossel S, Wehner R (1982) The bee’s map of the e-vector pattern in the sky. Proc Natl Acad Sci USA 79: 4451–4455PubMedCrossRefGoogle Scholar
  20. Siegel AW, White SH (1975) The development of spatial representation of large-scale environments. In: Reese HW (ed) Advances in child development and behavior. Academic Press, New York, pp 9–55Google Scholar
  21. Stein W (1977) Astronomische Navigation, 4. Aufl. Klasing, BielefeldGoogle Scholar
  22. Thorndyke PW, Hayes-Roth B (1982) Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychol 14: 560–589CrossRefGoogle Scholar
  23. Wehner R (1972) Dorsoventral asymmetry in the visual field of the bee, Apis mellifera. J Comp Physiol 77: 256–277CrossRefGoogle Scholar
  24. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 287–616Google Scholar
  25. Wenner R (1982a) Himmelsnavigation bei Insekten, Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184: 1–132Google Scholar
  26. Wehner R (1982b) The bee’s celestial map — a simplified model of the outside world. In: Breed MD, Michener CD, Evans HE (eds) The biology of social insects. Westview Press, Boulder, pp 375–379Google Scholar
  27. Wehner R, Flatt I (1972) The visual orientation of desert ants, Cataglyphis bicolor, by means of terrestrial cues. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 295–302CrossRefGoogle Scholar
  28. Wehner R, Flatt I (1977) Visual fixation in freely flying bees. Z Naturforsch 32c: 469–471Google Scholar
  29. Wehner R, Lanfranconi B (1981) What do the ants know about the rotation of the sky? Nature 293: 731–733CrossRefGoogle Scholar
  30. Wehner R, Räber F (1979) Visual spatial memory in desert ants, Cataglyphis bicolor(Hymenoptera, Formicidae). Experientia 35: 1569–1571CrossRefGoogle Scholar
  31. Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis(Formicidae, Hymenoptera). J Comp Physiol 142: 315–338CrossRefGoogle Scholar
  32. White JP, Allen J (1980) Melanesian prehistory. Some recent advances. Science 207: 728–734PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Rüdiger Wehner
    • 1
  1. 1.Zoologisches Institut der UniversitätZürichSwitzerland

Personalised recommendations