Skip to main content

Cochlear Electroanatomy: Influence on Information Processing

  • Conference paper
HEARING — Physiological Bases and Psychophysics
  • 178 Accesses

Abstract

The term electroanatomy was introduced by von Békésy (1951) during his studies aimed at determining the resistance and capacitance patterns that corresponded to the structural features of the cochlea. Considerations of gross impedance configurations (studied by several groups in recent years: Kurokawa, 1965; Johnstone et al., 1966: Honrubia and Ward, 1969; Strelioff, 1973; Honrubia et al. 1976; Cannon, 1976; Geisler et al., 1977) may now be refined by incorporating individual hair cell characteristics. Recent intracellular recordings from mammalian hair cells (Russell and Sellick, 1978; Dallos et al., 1982) provide various electrical measures that describe the properties of these cells and highlight differences between inner (IHC) and outer hair cells (OHC). The purpose of this paper is to consider a simple circuit model of a cochlear cross-section and to investigate relationships between computed electrical quantities and those obtained experimentally. It is shown that several hitherto baffling differences between IHC and OHC electrical properties are a simple consequence of their impedance configurations. The results also suggest that electrical interactions between OHCs and IHCs are highly unlikely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Békésy, G. von (1951). The coarse pattern of the electrical resistance in the cochlea of the guinea pig (electro-anatomy of the cochlea). J. Acoust. Soc. Am. 23, 18–28.

    Article  Google Scholar 

  • Brownell, W.E. (1982). Cochlear transduction: an integrative model and review. Hearing res. 335–360.

    Google Scholar 

  • Cannon, M.W., Jr. (1976). Electrical impedances, current pathways, and voltage sources in the guinea pig cochlea. Rept. ISR-S-14, Inst, for Sensory Research, Syracuse University, Syracuse, NY.

    Google Scholar 

  • Dallos, P. (1973). The Auditory Periphery. Biophysics and Physiology. 278–283, 428–431. New York, Academic Press.

    Google Scholar 

  • Dallos, P. (1983). Some electrical circuit properties of the organ of Corti. I. Analysis without reactive elements. Hearing Res. to be published.

    Google Scholar 

  • Dallos, P., Santos-Sacchi, J. and Flock, Å. (1982). Intracellular recordings from cochlear outer hair cells. Science 218, 582–584.

    Article  PubMed  CAS  Google Scholar 

  • Davis, H. (1965). A model for transducer action inthe cochlea. Cold Spring Harbor Symp. Quant. Biol. 30, 181–190.

    PubMed  CAS  Google Scholar 

  • Geisler, C.D. (1974). Model of crossed olivocochlear bundle effects. J. Acoust. Soc. Am. 56, 1910–1912.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, C.D., Mountain, D.C., Hubbard, A.E., Adrian, H.O. and Ravindran, A. (1977) Alternating electrical-resistance changes in the guinea-pig cochlea caused by acoustic stimulation. J. Acoust. Soc. Am. 61, 1557–1566.

    Article  PubMed  CAS  Google Scholar 

  • Honrubia, V. and Ward, P.H. (1969). Dependence of the cochlear microphonics and the summating potential on the endocochlear potential. J. Acoust. Soc. Am. 46, 388–392.

    Article  PubMed  CAS  Google Scholar 

  • Honrubia, V., Strelioff, D. and Sitko, S.T. (1976). Physiological basis of cochlear transduction and sensitivity. Ann. Otol. Rhinol. Laryngol. 85, 697–710.

    PubMed  CAS  Google Scholar 

  • Johnstone, B.M., Johnstone, J.R. and Pugsley, T,D. (1966). Membrane resistance in endolymphatic walls of the first turn in the guinea pig cochlea. J. Acoust. Soc. Am. 40, 1398–1404.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.O., Molnar, C.E. and Matthews, J.W. (1980). Cochlear mechanics: Nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in earcanal sound pressure. J. Acoust. Soc. Am. 67, 1704–1721.

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa, S. (1965). Experimental study on electrical resistance of basilar memrane in guinea pig. Jap. J. Oto-Rhino-Laryngol. 68, 1177–1195.

    Google Scholar 

  • Lim, D.J. (1980). Cochlear anatomy related to cochlear micromechanics. A review. J. Acoust. Soc. Am. 67, 1686–1695.

    Article  PubMed  CAS  Google Scholar 

  • Manley, G.A. (1978). Cochlear frequency sharpening—a new synthesis. Acta Oto-laryngol. 85, 167–176.

    CAS  Google Scholar 

  • Rhode, W.S. (1971). Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J. Acoust. Soc. Am. 49, 1218–1231.

    Article  PubMed  Google Scholar 

  • Russell, I.J. and Sellick, P.M. (1978). Intracellular studies of hair cells in the guinea pig cochlea. J. Physiol. (London) 284, 261–290.

    CAS  Google Scholar 

  • Sellick, P.M., Patuzzi, R. and Johnstone, B.M. (1982). Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J. Acoust. Soc. Am. 72, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Strelioff, D. (1973). A computer simulation of the generation and distribution of cochlear potentials. J. Acoust. Soc. Am. 54, 620–629.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, T.F. (1982). Bidirectional transduction in vertebrate hair cells: A mechanism for coupling mechanical and electrical processes. Hearing Res. 7, 353–360.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1938 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dallos, P. (1938). Cochlear Electroanatomy: Influence on Information Processing. In: Klinke, R., Hartmann, R. (eds) HEARING — Physiological Bases and Psychophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69257-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69257-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69259-8

  • Online ISBN: 978-3-642-69257-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics