Review Paper: Psychoacoustics of Normal and Impaired Listeners

  • Brian C. J. Moore
Conference paper

Abstract

In this paper I will give a brief introduction to some basic concepts and methods in psychoacoustics. The topics have been chosen to help the reader to understand the following papers, although it is not possible to cover all the relevant material. Since hearing involves the analysis of sounds in both the frequency and time domains, I start with an introduction to methods of measurement of the frequency and time resolution of the ear.

Keywords

Kanamycin Rounded Salvi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacon, S.P. (1979). Suppression effects in vowel pulsation patterns: normal-hearing and hearing-impaired listeners. M.A. Thesis, University of Kansas.Google Scholar
  2. Dreschler, W.A. and Plomp, R. (1980). Relation between psychophysical data and speech perception for hearing-impaired subjects.I. J. Acoust. Soc. Am. 3 68, 1608–1615.CrossRefGoogle Scholar
  3. Dreschler, W.A. and Plomp, R. (1983). Relation between psychophysical data and speech perception for hearing-impaired subjects.II. J. Acoust. Soc. Am., (submitted).Google Scholar
  4. Evans, E.F. (1975). The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea. Audiology, 14, 419–442.PubMedCrossRefGoogle Scholar
  5. Fastl, H. (1977). Roughness and temporal masking patterns of sinusoidally amplitude modulated broadband noise. In: Psychophysics and Physiology of Hearing, Eds. E.F. Evans and J.P. Wilson, pp. 403–414, London, Academic Press.Google Scholar
  6. Festen, J.M. and Plomp, R. (1981). Relations between auditory functions in normal hearing. J. Acoust. Soc. Am., 70, 356–369.PubMedCrossRefGoogle Scholar
  7. Festen, J.M. and Plomp, R. (1983). Relations between auditory functions in impaired hearing. J. Acoust. Soc. Am. (in press).Google Scholar
  8. Fitzgibbons, P.J. and Wightman, F.L. (1982). Gap detection in normal and hearing-impaired listeners. J. Acoust. Soc. Am., 72, 761–765.PubMedCrossRefGoogle Scholar
  9. Glasberg, B.R., Moore, B.C.J, and Nimmo-Smith, I. (1983). Comparison of auditory filter shapes derived with three different maskers. J. Acoust. Soc. Am., (submitted).Google Scholar
  10. Harrison, R.V. and Evans, E.F. (1979). Some aspects of temporal coding by single cochlear nerve fibers from regions of cochlear hair-cell degeneration in the Guinea Pig. Arch. Otolaryngol. 3 224, 71–78.Google Scholar
  11. Hoekstra, A. and Ritsma, R.J. (1977). Perceptive hearing loss and frequency selectivity. In: Psychophysies and Physiology of Hearing Eds. E.F. Evans and J.P. Wilson, pp. 263 - 271, London, Academic Press.Google Scholar
  12. Houtgast, T. (1972). Psychophysical evidence for lateral inhibition in hearing. J. Acoust. Soc. Am. 3 51, 1885–1894.CrossRefGoogle Scholar
  13. Houtgast, T. (1974a). Lateral suppression in hearing. Thesis, Free University of Amsterdam.Google Scholar
  14. Houtgast, T. (1974b). Auditory analysis of vowel-like sounds. Acustica, 31, 320–324.Google Scholar
  15. Houtgast, T. (1977). Auditory-filter characteristics derived from direct-masking data and pulsation-threshold data with a rippled-noise masker. J. Acoust. Soc. Am. 3 62, 409–415.CrossRefGoogle Scholar
  16. Irwin, R.J., Hinchcliffe, L.K. and Kemp, S. (1981). Temporal acuity in normal and hearing-impaired listeners. Audiology, 20, 234–243.PubMedCrossRefGoogle Scholar
  17. Johnson-Davies, D. and Patterson, R.D. (1979). Psychophysical tuning curves: restricting the listening band to the signal region, J. Acoust. Soc. Am. 3 65, 765–770.CrossRefGoogle Scholar
  18. Laurence, R.F., Moore, B.C.J, and Glasberg, B.R. (1983). A comparison of behind-the-ear high-fidelity linear hearing aids, and two-channel compression aids, in the laboratory and in everyday life. Brit. J. Audiol. (in press).Google Scholar
  19. Lippmann, R.P., Braida, L.D. and Durlach, N.I. (1981). Study of multi-channel amplitude compression and linear amplification for persons with sensorineural hearing loss. J. Acoust. Soc. Am. 3 69, 524–534.CrossRefGoogle Scholar
  20. Lutfi, R. and Patterson, R.D. (1983). On the mechanism of masking asymmetry. J. Acoust. Soc. Am. (submitted).Google Scholar
  21. Moore, B.C.J. (1980). Detection cues in forward masking. In: Psychophysical, Physiological and Behavioural Studies in Hearing, Eds. G. van den Brink and F.A. Bilsen, pp. 222–229, Delft, Delft University Press.Google Scholar
  22. Moore, B.C.J. (1982). Introduction to the Psychology of Hearing, 2nd Ed., London, Academic Press.Google Scholar
  23. Moore, B.C.J, and Glasberg, B.R. (1981). Auditory filter shapes derived in simultaneous and forward masking. J. Acoust. Soc. Am. 3 69, 1003–1014.CrossRefGoogle Scholar
  24. Moore, B.C.J, and Glasberg, B.R. (1983a). Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J. Acoust. Soc. Am., (submitted).Google Scholar
  25. Moore, B.C.J, and Glasberg, B.R. (1983b). Masking patterns for synthetic vowels in simultaneous and forward masking. J. Acoust. Soc. Am., (in press).Google Scholar
  26. O’Loughlin, B.J. and Moore, B.C.J. (1981a). Off-frequency listening: effects on psychoacoustical tuning curves obtained in simultaneous and forward masking. J, Acoust. Soc. Am. 3 69, 1119–1125.CrossRefGoogle Scholar
  27. O’Loughlin, B.J. and Moore, B.C.J. (1981b). Improving psychoacoustical tuning curves. Hear. Res., 5, 343–346.PubMedCrossRefGoogle Scholar
  28. Patterson, R.D. (1976). Auditory filter shapes derived with noise stimuli. J. Acoust. Soc. Am., 59, 640–654.PubMedCrossRefGoogle Scholar
  29. Patterson, R.D. and Nimmo-Smith, I. (1980). Off-frequency listening and auditory-filter asymmetry. J. Acoust. Soc. Am., 67, 229–245.PubMedCrossRefGoogle Scholar
  30. Patterson, R.D., Nimmo-Smith, I., Weber, D.L. and Milroy, R. (1982). The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram and speech threshold. J. Acoust. Soc. Am., 72, 1788–1803.PubMedCrossRefGoogle Scholar
  31. Pick, G.F. (1980). Level dependence of psychophysical frequency resolution and auditory filter shape. J. Acoust. Soc. Am., 68, 1085–1095.PubMedCrossRefGoogle Scholar
  32. Pick, G.F., Evans, E.F. and Wilson, J.P. (1977). Frequency resolution in patients with hearing loss of cochlear origin. In: Psyohophysios and Physiology of Hearing, Eds. E.F. Evans and J.P. Wilson, pp. 273–281, London, Academic Press.Google Scholar
  33. Salvi, R.J., Henderson, D. and Hamernik, R.P. (1979). Single auditory nerve fiber and action potential latencies in normal and noise-treated chinchillas. Hear. Res., 1, 237–251.CrossRefGoogle Scholar
  34. Schreiner, C. and Lewien, T. (1982). Envelope filtering in speech processing for cochlear implants. Presented at the Symposium on Artificial Auditory Stimulation, Erlangen.Google Scholar
  35. Shailer, JM.J. and Moore, B.C.J. (1983). Gap detection as a function of frequency, bandwidth and level. J. Acoust. Soc. Am. (submitted).Google Scholar
  36. Steeneken, H.J.M. and Houtgast, T. (1980). A physical method for measuring speech-transmission quality. J, Acoust. Soc. Am., 67, 318–326.CrossRefGoogle Scholar
  37. Summerfield, A.Q., Tyler, R.S., Foster, J.R., Wood, E. and Bailey, P.J. (1981). Failure of formant bandwidth narrowing to improve speech reception in sensorineural impairment. J. Acoust. Soc. Am., 70, S108–109.CrossRefGoogle Scholar
  38. Tyler, R.S., Summerfield, Q., Wood, E.J. and Fernandes, M.A. (1982). Psychoacoustic and phonetic temporal processing in normal and hearing-impaired listeners. J. Acoust. Soc. Am., 72, 740–752.PubMedCrossRefGoogle Scholar
  39. Van Zanten, G.A. (1980). Temporal modulation transfer functions for intensity modulated noise bands. In: Psychophysical, Physiologioa1 and Behavioural Studies in Hearing, Eds. G. van den Brink and F.A. Bilsen, pp. 206–209, Delft, Delft University Press.Google Scholar
  40. Verschuure, J. (1978). Auditory excitation patterns, Thesis, Erasmus University, Rotterdam.Google Scholar
  41. Viemeister, N.F. (1979). Temporal modulation transfer functions based upon modulation thresholds. J. Acoust. Soc. Am., 66, 1364–1380.PubMedCrossRefGoogle Scholar
  42. Villchur, E. (1977). Electronic models to simulate the effect of sensory distortions on speech perception by the deaf. J. Acoust. Soc. Am., 62, 665–674.PubMedCrossRefGoogle Scholar
  43. Weber, D.L. (1977). Growth of masking and the auditory filter. J, Acoust. Soc. Am., 62, 424–429.CrossRefGoogle Scholar
  44. Woolf, N.K., Ryan, A.F. and Bone, R.C. (1981). Neural phase-locking properties in the absence of cochlear outer hair cells. Hear. Res., 11, 109–127.Google Scholar
  45. Zwicker, E. (1974). On a psychoacoustical equivalent of tuning curves. In: Faots and Models in Hearing, Eds. E. Zwicker and E. Terhardt, Berlin, Springer-Verlag.Google Scholar
  46. Zwicker, E. and Feldtkeller, R. (1967). Das Ohr als Naohriohtenempfanger, Stuttgart, Hirzel.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Brian C. J. Moore
    • 1
  1. 1.Department of Experimental PsychologyUniversity of CambridgeCambridgeEngland

Personalised recommendations