Skip to main content

Autonomic Nervous System: Adrenergic Agonists

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 69))

Abstract

Increased understanding of the adrenergic nervous system has occurred because of the availability of radiolabeled catecholamines of high specific activity and the development of biochemical and histofluorescent methods for measuring catecholamines and the biological responses to them with a high degree of sensitivity. Interest in applying the tools of contemporary adrenergic pharmacology to the eye stems from several sources:

  1. 1.

    The uveal tract, especially the iris, is a place of very rich noradrenergic innervation, and the eye and its fluid chambers are suited for investigation of basic mechanisms.

  2. 2.

    The adrenergic nervous system participates in several ocular regulatory and neurotransmitter mechanisms.

  3. 3.

    A possible role for adrenergic dysregulation exists in certain disease states.

  4. 4.

    Adrenergic compounds are relied upon in the treatment of glaucoma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif AA, Luke B (1981) Sodium ion and the neurotransmitter-stimulated 32P labelling of phosphoinositides and other phospholipids in the iris muscle. Biochim Biophys Acta 673:64–74

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Latif AA, Green K, Smith JP (1979) Sympathetic denervation and the triphosphoinositide effect in the iris smooth muscle: a biochemical method for the determination of alpha adrenergic receptor denervation supersensitivity. J Neurochem 32:225–228

    Article  PubMed  CAS  Google Scholar 

  • Aberg G, Adler G, Wikberg J (1978) Inhibition and facilitation of lacrimal flow by β-adrenergic drugs. Acta Ophthalmol (Copenh) 57:225–235

    Article  Google Scholar 

  • Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    PubMed  CAS  Google Scholar 

  • Akhtar RA, Abdel-Latif AA (1978) Calcium ion requirement for acetylcholine-stimulated breakdown of triphosphoinositide in rabbit iris smooth muscle. J Pharmacol Exp Ther 204:655–668

    PubMed  CAS  Google Scholar 

  • Alexander JH, van Lennep EW, Young JA (1972) Water and electrolyte secretion by the exorbital lacrimal gland of the rat studied by micropuncture and catheterization techniques. Pflügers Arch 337:299–309

    Article  PubMed  CAS  Google Scholar 

  • Alm A (1980) The effect of topical 1-epinephrine on regional ocular blood flow in monkeys. Invest Ophthalmol Vis Sci 19:487–191

    PubMed  CAS  Google Scholar 

  • Alm A (1983) Microcirculation of the eye. In: Mortillaro NA (ed) The physiology and pharmacology of the microcirculation, vol. 1. Academic Press, New York, pp 299–359 (in press)

    Google Scholar 

  • Anderson JA, Davis WL, Wei C-P (1980) Site of ocular hydrolysis of a prodrug, dipivefrin, and a comparison of its ocular metabolism with that of the parent compound, epinephrine. Invest Ophthalmol Vis Sci 19:817–823

    PubMed  CAS  Google Scholar 

  • Araie M, Takase M (1981) Effects of various drugs on aqueous humor dynamics in man. Jpn J Ophthalmol 25:91–111

    CAS  Google Scholar 

  • Araie M, Sawa M, Nagataki S, Mishima S (1980) Aqueous humor dynamics in man as studied by oral fluorescein. Jpn J Ophthalmol 24:346–362

    Google Scholar 

  • Araie M, Takase M, Sakai Y, Ishii Y, Yokoyama Y, Kitagawa M (1982) Beta adrenergic blockers: ocular penetration and binding to the uveal pigments. Jpn J Ophthalmol 26:248–263

    PubMed  CAS  Google Scholar 

  • Ashburn FS, Gillespie JE, Kass MA, Becker B (1979) Timolol plus maximum tolerated antiglaucoma therapy: a one year follow-up study. Surv Ophthalmol 23:389–394

    Article  PubMed  Google Scholar 

  • Balacco-Gabrieli C (1971a) Preliminary observations of the action of an MAO inhibitor (pargyline) on iris motility. Boll Soc Ital Biol Sper 47:33–35

    PubMed  CAS  Google Scholar 

  • Balacco-Gabrieli C (1971b) Preliminary observations on the action of an MAO inhibitor (iproniazid) on iris motility. Boll Soc Ital Biol Sper 47:36–38

    PubMed  CAS  Google Scholar 

  • Ballintine EJ (1960) In: Newell FW (ed) Glaucoma: transactions of the fifth conference. Josiah Macy Jr Foundation, New York p 249

    Google Scholar 

  • Ballintine EJ, Garner LL (1961) Improvement of the coefficient of outflow in glaucomatous eyes. Arch Ophthalmol 66:314–317

    Article  PubMed  CAS  Google Scholar 

  • Bárány EH (1963) A mathematical formulation of intraocular pressure as dependent on secretion, ultrafiltration, bulk outflow and osmotic reabsorption of fluid. Invest Ophthalmol 2:584–590

    PubMed  Google Scholar 

  • Bárány EH (1966) Adrenergic effects on outflow facility. In: Paterson G, Miller SJH, Paterson GD (eds) Drug mechanisms in glaucoma. The Gilston Glaucoma Symposium. Churchill, London

    Google Scholar 

  • Bárány EH (1973) The liver-like anion transport system in rabbit kidney uvea and choroid plexus. I. Selectivity of some inhibitors, direction of transport, possible physiological substrates. Acta Physiol Scand 88:412–429

    Article  PubMed  Google Scholar 

  • Barbaccia ML, Lucchi L, Kobayashi H, Spano PF, Govoni S, Trabucchi M (1982) Modulation of dopamine turnover in rat retina by opiates: effects of different pharmacological treatments. Pharmacol Res Commun 14:541–550

    Article  PubMed  CAS  Google Scholar 

  • Baum JL, Silbert AM (1978) Aspects of corneal wound healing in health and disease. Trans Ophthalmol Soc UK 98:348–351

    PubMed  CAS  Google Scholar 

  • Bausher LP (1976) Identification of A and B forms of monoamine oxidase in the iris-ciliary body, superior cervical ganglion, and pineal gland of albino rabbits. Invest Ophthalmol 15:529–537

    PubMed  CAS  Google Scholar 

  • Bausher LP, Sears ML (1976) Potentiation of the effects of topical epinephrine on the pupil and intraocular pressure in the sympathetically denervated rabbit eye by a catechol-O-methyltransferase inhibitor. Invest Ophthalmol 15:854–857

    PubMed  CAS  Google Scholar 

  • Bausher LP, Gregory DS, Sears ML (1983) Forskolin activates adenylate cyclase in ciliary processes. Invest Ophthalmol Vis Sci [Suppl] 24:4

    Google Scholar 

  • Bean JW, Bohr DF (1941) Effects of adrenalin and acetylcholine on isolated iris muscle in relation to pupillary regulation. Am J Physiol 133:106–111

    CAS  Google Scholar 

  • Beaver WT, Riker WF (1962) The quantitative evaluation of autonomic drugs on the isolated eye. J Pharmacol Exp Ther 138:48–56

    PubMed  CAS  Google Scholar 

  • Becker B, Linner E (1952) Ascorbic acid as a test substance for measuring relative changes in the rate of plasma flow through the ciliary processes. III. The effect of preganglionic section of the cervical sympathetic in rabbits on the ascorbic acid content of the aqueous humor at varying plasma levels. Acta Physiol Scand 26:79–85

    Article  PubMed  CAS  Google Scholar 

  • Becker B, Pettit TH, Gay AJ (1961) Topical epinephrine therapy of open-angle glaucoma. Arch Ophthalmol 66:219–225

    Article  PubMed  CAS  Google Scholar 

  • Beitch BR, Beitch I, Zadunaisky JA (1974) The stimulation of chloride transport by prostaglandins and their interaction with epinephrine, theophylline, and cyclic AMP in corneal epithelium. J Membr Biol 19:381–396

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson E (1981) Aspects of the epidemiology of chronic glaucoma. Acta Ophthalmol [Suppl] (Copenh) 146

    Google Scholar 

  • Bengtsson E (1977) Interaction of adrenergic agents with α-melanocyte-stimulating hormone and infrared irradiation of the iris in the rabbit eye. Invest Ophthalmol Vis Sci 16:209–217

    PubMed  CAS  Google Scholar 

  • Bentley PJ, McGahan MC (1982) A pharmacological analysis of chloride transport across the amphibian cornea. J Physiol (Lond) 325:481–192

    CAS  Google Scholar 

  • Bernheimer H (1964) Über das Vorkommen von Katecholaminen und von 3,4-Dihydroxyphenylalanin (Dopa) im Auge. Arch Exp Pathol Pharmakol 247:202–213

    Article  CAS  Google Scholar 

  • Bhargava G, Makman MH, Katzman R (1980) Distribution of β-adrenergic receptors and isoproterenol-stimulated cyclic AMP formation in monkey iris and ciliary body. Exp Eye Res 31:471–477

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1962) Autonomic nervous control of uveal blood flow. Acta Physiol Scand 56:70–81

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1965) The aqueous humor drainage mechanism in the cynomolgus monkey (Macacairus) with evidence for unconventional routes. Invest Ophthalmol 4:911–919

    PubMed  CAS  Google Scholar 

  • Bill A (1969) Early effects of epinephrine on aqueous humor dynamics in vervet monkeys (Cercopithecus ethiops). Exp Eye Res 8:35–43

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1970) Effects of norepinephrine, isoproterenol and sympathetic stimulation on aqueous humor dynamics in vervet monkeys. Exp Eye Res 10:31–46

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1971) Aqueous humor dynamics in monkeys (Macaca irus and Cercopithecus ethiops). Exp Eye Res 11:195–206

    Article  PubMed  CAS  Google Scholar 

  • Bill A (1975) Blood circulation and fluid dynamics in the eye. Physiol Rev 55:383–417

    PubMed  CAS  Google Scholar 

  • Bill A (1980) Ocular circulation. In: Moses RA (ed) Adler’s physiology of the eye. Mosby, St. Louis, Chap. 7

    Google Scholar 

  • Bill A, Bárány EH (1966) Gross facility, facility of conventional routes and pseudofacility of aqueous humor outflow in the cynomolgus monkey. Arch Ophthalmol 75:665–673

    Article  PubMed  CAS  Google Scholar 

  • Bill A, Heilmann K (1975) Ocular effects of Clonidine in cats and monkeys (Macaca irus). Exp Eye Res 21:481–488

    Article  PubMed  CAS  Google Scholar 

  • Bischoff P (1978) Erfahrungen mit Timolol in der Glaukom-Therapie. Klin Monatsbl Augenheilkd 173:202–207

    PubMed  CAS  Google Scholar 

  • Bito LA, Dawson MJ (1970) The site and mechanism of the control of cholinergic sensitivity. J Pharmacol Exp Ther 175:673–684

    CAS  Google Scholar 

  • Bittiger H, Heid J, Wigger N (1980) Are only alpha2-adrenergic receptors present in bovine retina? Nature 287:645–647

    Article  PubMed  CAS  Google Scholar 

  • Boas RS, Messenger MJ, Mittag TW, Podos SM (1981) The effects of topically applied epinephrine and timolol on intraocular pressure and aqueous humor cyclic-AMP in the rabbit. Exp Eye Res 32:681–690

    Article  PubMed  CAS  Google Scholar 

  • Boissier J-R, Advenier CH, Ho S (1976) Sécrétion lacrymale chez le lapin et récepteurs α-adrénergiques. J Pharmacol 7:241–250

    CAS  Google Scholar 

  • Bonomi L, Carli A (1972) Sugli effetti dell’instillazione di propranololo sulla dinamica dell’umore acqueo in occhi umani glaucomatosi. Minerva Oftal 14:28–32

    Google Scholar 

  • Botelho SY, Goldstein AM, Martinez EV (1973) Norepinephrine-responsive β-adrenergic receptors in rabbit lacrimal gland. Am J Physiol 224:1119–1122

    PubMed  CAS  Google Scholar 

  • Botelho SY, Martinez EV, Pholpramool C, van Prooyen HC, Janssen JT, DePalau A (1976) Modification of stimulated lacrimal gland flow by sympathetic nerve impulses in rabbit. Am J Physiol 230:80–84

    PubMed  CAS  Google Scholar 

  • Brini A (1973) Hypochromia of the rabbit iris induced by 6-hydroxydopamine. Invest Ophthalmol 12:312–313

    PubMed  CAS  Google Scholar 

  • Broekhuyse RM (1974) Tear lactoferrin: a bacteriostatic and complexing protein. Invest Ophthalmol 13:550–554

    PubMed  CAS  Google Scholar 

  • Bromberg BB (1981) Autonomic control of lacrimal protein secretion. Invest Ophthalmol Vis Sci 20:110–116

    PubMed  CAS  Google Scholar 

  • Bromberg BB, Gregory DS, Sears ML (1980) Beta adrenergic receptors in ciliary processes of the rabbit. Invest Ophthalmol Vis Sci 19:203–207

    PubMed  CAS  Google Scholar 

  • Brown JH, Makman MH (1973) Influence of neuroleptic drugs and apomorphine on dopamine-sensitive adenylate cyclase of retina. J Neurochem 21:477–479

    Article  PubMed  CAS  Google Scholar 

  • Brubaker RF, Gaasterland D (to be published) The effect of isoproterenol on aqueous humor formation in humans

    Google Scholar 

  • Bucci MG, Missiroli A, Pecori Giraldi J, Virno M (1968) Local administration of propranolol in the glaucoma therapy. Boll Ocul 47:51–60

    PubMed  CAS  Google Scholar 

  • Bucher MB, Schorderet M (1975) Dopamine- and apomorphine-sensitive adenylate cyclase in homogenates of rabbit retina. Naunyn Schmiedebergs Arch Pharmacol 288:103–107

    Article  PubMed  CAS  Google Scholar 

  • Burnside B, Basinger S (1983) Retinomotor pigment migration in the teleost retinal pigment epithelium. II. Cyclic-3′,5′-adenosine monophosphate induction of dark-adaptive movement in vitro. Invest Ophthalmol Vis Sci 24:16–23

    PubMed  CAS  Google Scholar 

  • Butterfield LC, Neufeld AH (1977) Cyclic nucleotides and mitosis in the rabbit cornea following superior cervical ganglionectomy. Exp Eye Res 25:427–433

    Article  PubMed  CAS  Google Scholar 

  • Candia OA, Neufeld AH (1978) Topical epinephrine causes a decrease in density of beta-adrenergic receptors and catecholamine-stimulated chloride transport in the rabbit cornea. Biochim Biophys Acta 543:403–408

    Article  PubMed  CAS  Google Scholar 

  • Candia OA, Montoreano R, Podos SM (1977) Effect of the ionophore A23187 on chloride transport across isolated frog cornea. Am J Physiol 233:F94–101

    PubMed  CAS  Google Scholar 

  • Caprioli J, Sears M (1983) Forskolin lowers intraocular pressure in rabbits, monkeys and man. Lancet I:958–960

    Article  Google Scholar 

  • Caprioli J, Sears M, Bausher L, Gregory D (to be published) Forskolin lowers intraocular pressure by reducing aqueous flow. Invest Ophthalmol Vis Sci

    Google Scholar 

  • Čepelík J, Černohorský M (1981) The effects of adrenergic agonists and antagonists on the adenylate cyclase in albino rabbit ciliary processes. Exp Eye Res 32:291–299

    Article  PubMed  Google Scholar 

  • Chalfie M, Neufeld AH, Zadunaisky JA (1972) Action of epinephrine and other cyclic AMP-mediated agents on the chloride transport of the frog cornea. Invest Ophthalmol 11:644–650

    PubMed  CAS  Google Scholar 

  • Chandler PA, Grant WM (eds) (1979) Glaucoma, 2nd edn. Lea and Febiger, Philadelphia

    Google Scholar 

  • Cherksey BD, Zadunaisky JA (1981) Membrane beta receptors: interaction with cytoskeleton in chloride secreting systems. Ann NY Acad Sci 372:309–331

    Article  PubMed  CAS  Google Scholar 

  • Clark SL (1937) Innervation of the intrinsic muscles of the eye of the cat. J Comp Neurol 66:307–320

    Article  Google Scholar 

  • Coakes RL, Brubaker RF (1978) The mechanism of timolol in lowering intraocular pressure in the normal eye. Arch Ophthalmol 96:2045–2048

    Article  PubMed  CAS  Google Scholar 

  • Coca-Prados M, Kondo K, Sears M (1983) Protein phosphorylation in cultured human ciliary epithelia in response to activators of adenylate cyclase, cyclic AMP and analogues. In: Krieglstein GK, Leydhecker HW (eds) Glaucoma update II. International glaucoma symposium, Carmel, California, 22–27 October 1982. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cohen KL, van Horn DL, Edelhauser HF, Schultz RO (1979) Effect of phenylephrine on normal and regenerated endothelial cells in cat cornea. Invest Ophthalmol Vis Sci 18:242–249

    PubMed  CAS  Google Scholar 

  • Colasanti BK, Bárány EH (1979) Potentiation of the mydriatic effect of norepinephrine in the rabbit after MAO inhibition. Invest Ophthalmol Vis Sci 18:200–203

    PubMed  CAS  Google Scholar 

  • Colasanti BK, Trotter RR (1976) Alterations in adrenergic sensitivity of the rabbit iris after variation of environmental lighting conditions. Invest Ophthalmol 15:44–47

    PubMed  CAS  Google Scholar 

  • Colasanti BK, Trotter RR (1981) Effects of selective beta1 and beta2 adrenoreceptor agonists and antagonists on intraocular pressure in the cat. Invest Ophthalmol Vis Sci 20:69–76

    PubMed  CAS  Google Scholar 

  • Cole DF (1966) Aqueous humor formation. Doc Ophthalmol 21:116–238

    Article  Google Scholar 

  • Cole DF, Monro PAG (1976) The use of fluorescein-labelled dextrans in investigation of aqueous humour outflow in the rabbit. Exp Eye Res 23:571–585

    Article  PubMed  CAS  Google Scholar 

  • Cole DF, Rumble R (1970a) Effects of catecholamines on circulation in the rabbit iris. Exp Eye Res 9:219–232

    Article  PubMed  CAS  Google Scholar 

  • Cole DF, Rumble R (1970b) Responses of iris blood flow to stimulation of the cervical sympathetic in the rabbit. Exp Eye Res 10:183–191

    Article  PubMed  CAS  Google Scholar 

  • Cramer H, Hammers R, Maier P, Schindler H (1978) Cyclic 3′,5′-adenosine monophosphate in the choroid plexus: stimulation by cholera toxin. Biochem Biophys Res Commun 84:1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Creveling CF, Daly JW, Tokuyama T, Witkop B (1969) Labile lipophilic derivatives of norepinephrine capable of crossing the blood-brain barrier. Experientia 25:26–27

    Article  PubMed  CAS  Google Scholar 

  • Darier A (1900) De l’extrait de capsule surrénales en thérapeutique oculaire. Lab Clin Ophthalmol 6:141

    Google Scholar 

  • Dartt LA, Botelho SY (1979) Protein in rabbit lacrimal gland fluid. Invest Ophthalmol Vis Sci 18:1207–1209

    PubMed  CAS  Google Scholar 

  • Davies DC, Navaratnam Y (1979) Development of adrenoceptive and cholinoceptive responsiveness in the neonatal rat iris. Exp Eye Res 29:203–210

    Article  PubMed  CAS  Google Scholar 

  • Davies DC, Navaratnam V (1981) Differentiation of α-adrenergic responsiveness in the neonatal rat iris after decentralization or extirpation of the superior cervical ganglion. Brain Res 213:119–216

    Article  PubMed  CAS  Google Scholar 

  • Demailly P, Lehner MA, Duperré J (1976) A new beta blocker in the treatment of chronic glaucoma: timolol maleate. Bull Soc Ophtalmol Paris 76:801–802

    CAS  Google Scholar 

  • De Mello MC, Ventura AL, Paes-de-Carvalho R, Klein WL, De Mello FG (1982) Regulation of dopamine and adenosine-dependent adenylate cyclase systems of chicken embryo retina cells in culture. Proc Natl Acad Sci USA 79:5708–5712

    Article  PubMed  Google Scholar 

  • De Vries GW, Campau KM, Ferrendelli JA (1982) Adenylate cyclases in the vertebrate retina: distribution and characteristics in rabbit and ground squirrel. J Neurochem 38:759–765

    Article  PubMed  Google Scholar 

  • Diamond JG (1976) 6-hydroxydopamine in treatment of open angle glaucoma. Arch Ophthalmol 94:41–47

    Article  PubMed  CAS  Google Scholar 

  • Dikstein S (1973) Efficiency and survival of the corneal endothelial pump. Exp Eye Res 15:639–644

    Article  PubMed  CAS  Google Scholar 

  • Djahanguiri B (1963) Action d’amine dérivées du catéchol sur le muscle iridien de bovidé. Arch Int Pharmacodyn Ther 142:276–278

    PubMed  CAS  Google Scholar 

  • Dollery CT, Hill DW, Hodge JV (1963) The response of normal retinal blood vessels to angiotensin and noradrenaline. J Physiol (Lond) 165:500–506

    CAS  Google Scholar 

  • Dowling JE (1970) Organization of vertebrate retinas. Invest Ophthalmol 9:655–680

    PubMed  CAS  Google Scholar 

  • Dowling JE, Ehinger B (1978) The interplexiform cell system. I. Synapses of the dopaminergic neurons of the goldfish retina. Proc. R Soc Lond [Biol] 201:7–26

    Article  CAS  Google Scholar 

  • Duffin RM, Christensen RE, Bergamini MVW (1981) Suppression of adrenergic adaptation in the eye with a prostaglandin synthesis inhibitor. Invest Ophthalmol Vis Sci 21:756–759

    PubMed  CAS  Google Scholar 

  • Duyff JW (1958) Kinetics of receptor occupation. Acta Physiol Pharmacol Neerl 7:239–254

    PubMed  CAS  Google Scholar 

  • Eakins KE (1963) Effect of intravitreous injections of norepinephrine, epinephrine, and isoproterenol on the intraocular pressure and aqueous humor dynamics of rabbit eyes. J Pharmacol Exp Ther 140:79–84

    CAS  Google Scholar 

  • Eakins KE, Eakins HMT (1964) Adrenergic mechanisms and the outflow of aqueous humor from the rabbit eye. J Pharmacol Exp Ther 144:60–65

    PubMed  CAS  Google Scholar 

  • Edelhauser HF, Hyndiuk RA, Zeeb A, Schulte RO (1982) Corneal edema and the intraocular use of epinephrine. Am J Ophthalmol 93:327–333

    PubMed  CAS  Google Scholar 

  • Ehinger B (1966) Ocular and orbital vegetative nerves. Acta Physiol Scand [Suppl] 268

    Google Scholar 

  • Ehinger B (1967) Double innervation of the feline iris dilator. Arch Ophthalmol 77:541–545

    Article  PubMed  CAS  Google Scholar 

  • Ehinger B, Falck B (1970) Innervation of iridic melanophores. Z Zellforsch Mikrosk Anat 105:538–542

    Article  PubMed  CAS  Google Scholar 

  • Engstrom P, Dunham EW (1982) Alpha adrenergic stimulation of prostaglandin release from rabbit iris ciliary body in vitro. Invest Ophthalmol Vis Sci 22:757–767

    PubMed  CAS  Google Scholar 

  • Epstein MH, Feldman AM, Brusilow SW (1977) Cerebrospinal fluid production: stimulation by cholera toxin. Science 196:1012–1013

    Article  PubMed  CAS  Google Scholar 

  • Eränkö O, Räisänen L (1965) Fibers containing both noradrenaline and acetylcholinesterase in the nerve net of the rat iris. Acta Physiol Scand 63:505–506

    Article  Google Scholar 

  • Eränkö O (1967) Histochemistry of nervous tissues: catecholamines and cholinesterases. Ann Rev Pharmacol 7:203–222

    Article  PubMed  Google Scholar 

  • Feeney L, Hogan MJ (1961) Electron microscopy of the human choroid. II. The choroidal nerves. Am J Ophthalmol 51:200–211

    Google Scholar 

  • Feldman AM, Brusilow SW (1976) Effects of cholera toxin on cochlear endolymph production. Model for endolymphatic hydrops. Proc Natl Acad Sci USA 73:1761–1764

    Article  CAS  Google Scholar 

  • Ferrendelli JA, Campau KM, DeVries GW (1982) Adenylate cyclases in vertebrate retina: enzymatic characteristics in normal and dystrophic mouse retina. J Neurochem 38:753–758

    Article  PubMed  CAS  Google Scholar 

  • Finidori-Lepicard J, Schorderet-Slatkine S, Hanoune J, Baulieu EE (1981) Progesterone inhibits membrane-bound adenylate cyclase in Xenopis laevis oocytes. Nature 292:255–256

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RA (1973) Cholera. CRC Crit Rev Microbiol 2:553–623

    Article  CAS  Google Scholar 

  • Flach AJ, Peterson JS, Wood I, Roizen MF (1981) Degeneration of nerve terminals in cats following systemic epinephrine: depletion of tissue norepinephrine correlated with ultrastructural changes. Exp Eye Res 32:389–394

    Article  PubMed  CAS  Google Scholar 

  • Fleming WW (1975) Supersensitivity in smooth muscle. Introduction and historical perspective. Fed Proc 34:1960–1970

    Google Scholar 

  • Flower RJ, Blackwell GJ (1979) Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation. Nature 278:456–459

    Article  PubMed  CAS  Google Scholar 

  • Fogle JA, Neufeld AH (1979) The adrenergic and cholinergic corneal epithelium. Invest Ophthalmol Vis Sci 18:1212–1215

    PubMed  CAS  Google Scholar 

  • Fogle JA, Yoza BK, Neufeld AH (1980) Diurnal rhythm of mitosis in rabbit corneal epithelium. Albrecht von Graefes Arch Klin Exp Ophthalmol 213:143–148

    Article  PubMed  CAS  Google Scholar 

  • Ford LC, DeLance RJ, Petty RW (1976) Identification of a nonlysosomal bactericidal factor (beta lysin) in human tears and aqueous humor. Am J Ophthalmol 81:30–33

    PubMed  CAS  Google Scholar 

  • Fraunfelder FT (1982) Drug-induced ocular side effects and drug interactions. 2nd edn. Lea and Febiger, Philadelphia

    Google Scholar 

  • Frayser R, Hickam JB (1965) Effect of vasodilatator drugs in the retinal blood flow in man. Arch Ophthalmol 73:640–642

    Article  PubMed  CAS  Google Scholar 

  • Frederick JM, Rayborn ME, Laties AM, Lam DM, Hollyfield JG (1982) Dopaminergic neurons in the human retina. J Comp Neurol 210:65–79

    Article  PubMed  CAS  Google Scholar 

  • Friedenwald JS (1934) Retinal vascular dynamics. Am J Ophthalmol 17:387–395

    Google Scholar 

  • Friedenwald JS, Buschke W (1958) The effects of excitement of epinephrine and sympathectomy on the mitotic activity of the corneal epithelium in rats. Am J Physiol 141:689–694

    Google Scholar 

  • Friedman E, Smith TR (1965) Estimation of retinal blood flow in animals. Invest Ophthalmol 4:1122–1128

    PubMed  CAS  Google Scholar 

  • Friedman Z, Lowe M, Selinger Z (1981) Beta adrenergic receptors stimulated peroxidase secretion from rat lacrimal gland. Biochem Biophys Acta 675:40–45

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA, Field M, Schultz SG (1979) Sodium coupled chloride transport by epithelial tissues. Am J Physiol 236:F1–F8

    PubMed  CAS  Google Scholar 

  • Fujita S (1980) Diurnal variation in human corneal thickness. Jpn J Ophthalmol 24:444–456

    Google Scholar 

  • Fujita H, Kondo K, Sears M (to be published) Hypothesis on the formation of aqueous humor with special regard to the role of the nonpigmented epithelium of the ciliary processes. Internat Ophthalmol

    Google Scholar 

  • Gaasterland D, Kupfer C, Ross K, Gabelnick HL (1973) Studies of aqueous humor dynamics in man. 3. Measurements in young normal subjects using norepinephrine and isoproterenol. Invest Ophthalmol 12:267–279

    PubMed  CAS  Google Scholar 

  • Garner LL, Johnstone WW, Ballintine EJ, Carrol ME (1959) Effect of 2% levorotatory epinephrine on the intraocular pressure of the glaucomatous eye. Arch Ophthalmol 62:230–238

    Article  CAS  Google Scholar 

  • Garte SJ, Belman S (1980) Tumour promoter uncouples β-adrenergic receptor from adenyl cyclase in mouse epidermis. Nature 284:171–173

    Article  PubMed  CAS  Google Scholar 

  • Geltzer A (1969) Autonomic innervation of the cat iris. An electron microscopic study. Arch Ophthalmol 81:70–83

    Article  PubMed  CAS  Google Scholar 

  • Gherezshiher T, Christensen HD, Koss MC (1982) Studies on the mechanism of methyl-do-pa-induced mydriasis in the cat. Naunyn Schmiedebergs Arch Pharmacol 320:58–62

    Article  Google Scholar 

  • Gladstone RM (1969) Development and significance of heterochromia of the iris. Arch Neurol 21:184–191

    Article  PubMed  CAS  Google Scholar 

  • Glickman RD, Adolph AR, Dowling JE (1982) Inner plexiform circuits in the carp retina: effects of cholinergic agonists, GABA and substance P on the ganglion cells. Brain Res 234:81–99

    Article  PubMed  CAS  Google Scholar 

  • Gnädinger MC, Bárány EH (1964) Die Wirkung der β-adrenergischen Substanz Isoprenalin auf die Ausfluß-Fazilität des Kaninchenauges. Albrecht von Graefes Arch Ophthalmol 167:483–492

    Article  Google Scholar 

  • Goldberg ND, Haddox MR (1977) Cyclic GMP metabolism and involvement in biological regulation Annu Rev Biochem 46:823–896

    Article  PubMed  CAS  Google Scholar 

  • Goldmann H (1950) Der Druck im Schlemm’schen Kanal bei Normalen und bei Glaukoma simplex. Experientia 6:110–111

    Article  Google Scholar 

  • Goldmann H (1951) L’origine de l’hypertension oculaire dans le glaucome primitif. Ann Ocul (Paris) 184:1086

    CAS  Google Scholar 

  • Gololobova MT (1958) Changes in mitotic activity in rats in relation to the time of day or night. Bull Exp Biol Med 46:1143–1146

    Article  Google Scholar 

  • Goodman LS, Gilman A (eds) (1980) The pharmacological basis of therapeutics, 6th edn. MacMillan, New York, p 642

    Google Scholar 

  • Grant WM (1955) Physiological and pharmacological influences upon intraocular pressure. Pharmacol Rev 7:143–182

    PubMed  CAS  Google Scholar 

  • Grant WM (1969) Action of drugs on movement of ocular fluids. Annu Rev Pharmacol 9:85–94

    Article  PubMed  CAS  Google Scholar 

  • Gregory DS, Bausher LP, Bromberg BB, Sears ML (1981a) The beta adrenergic receptor and adenyl cyclase of rabbit ciliary processes. In: Sears ML (ed) New directions in ophthalmic research. Yale University Press, New Haven, pp 127–148

    Google Scholar 

  • Gregory DS, Sears ML, Bausher L, Mishima H, Mead A (1981b) Intraocular pressure and aqueous flow are decreased by cholera toxin. Invest Ophthalmol Vis Sci 20:371–381

    PubMed  CAS  Google Scholar 

  • Greve EL (ed) (1977) Symposium on medical therapy in glaucoma, Amsterdam, 15 May 1976. Doc Ophthalmol 12

    Google Scholar 

  • Hahnenberger RW (1976) Influence of intraocular colchicine and vinblastine on the cat iris. Acta Physiol Scand 98:425–432

    Article  PubMed  CAS  Google Scholar 

  • Hamburger K (1923) Experimentelle Glaukomtherapie. Klin Monatsbl Augenheilkd 7:810–811

    Google Scholar 

  • Harris L, Galin M, Lerner R (1970) The influence of low-dose 1-epinephrine on aqueous outflow facility. Ann Ophthalmol 2:455–458

    Google Scholar 

  • Harris MA, Schwartz B (1983) Dexamethasone-induced stimulation of beta-adrenergic sensitive adenylate cyclase in ciliary process epithelium. Invest Ophthalmol Vis Sci [Suppl] 24:5

    Google Scholar 

  • Havener WH (1974) Ocular pharmacology. Mosby, St. Louis

    Google Scholar 

  • Hayasaka S, Sears M (1978) Effects of epinephrine, indomethacin, acetylsalicylic acid, dexamethasone, and cyclic AMP on the in vitro activity of lysosomal hyaluronidase from the rabbit iris. Invest Ophthalmol Vis Sci 17:1109–1113

    PubMed  CAS  Google Scholar 

  • Hedden WL Jr, Dowling JE (1978) The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurones. Proc R Soc Lond [Biol] 201:7–26

    Article  Google Scholar 

  • Hedqvist P (1973) Autonomic neurotransmission. In: Ramwell PW (ed) The prostaglandins, vol 1. Plenum, New York

    Google Scholar 

  • Heilmann K, Richardson KT (1978) Glaucoma. Conceptions of a disease. Pathogenesis, diagnosis, therapy. Saunders, Philadelphia

    Google Scholar 

  • Henkind P (1965) Circulation in the iris and ciliary processes. Br J Ophthalmol 49:6–10

    Article  PubMed  CAS  Google Scholar 

  • Herzog V, Sies H, Miller F (1976) Exocytosis in secretory cells of rat lacrimal gland. J Cell Biol 70:692–706

    Article  PubMed  CAS  Google Scholar 

  • Higgins RG, Brubaker RF (1980) Acute effect of epinephrine on aqueous humor formation in the timolol-treated normal as measured by fluorophotometry. Invest Ophthalmol Vis Sci 19:420–423

    PubMed  CAS  Google Scholar 

  • Hirata F, Strittmatter WJ, Axelrod J (1979) β-Adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and β-adrenergic receptor-adenylate cyclase coupling. Proc Natl Acad Sci USA 76:368–372

    Article  PubMed  CAS  Google Scholar 

  • Hitchings RA, Glover D (1982) Adrenaline 1% combined with guanethidine 1% versus adrenaline 1%: a randomized prospective double-blind cross-over study. Br J Ophthalmol 66:247–249

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T (1966) Electron microscopic observations on nerve terminals in the intrinsic muscles of the albino rat iris. Acta Physiol Scand 67:255–256

    Article  PubMed  Google Scholar 

  • Hökfelt T (1967) Ultrastructural studies on adrenergic nerve terminals in the albino rat iris after pharmacological and experimental treatment. Acta Physiol Scand 69:125–126

    Article  PubMed  Google Scholar 

  • Hökfelt T, Nilsson O (1965) The relationship between nerves and smooth muscle cells in the rat iris. II. The sphincter muscle. Z Zellforsch Mikrosk Anat 66:848–853

    Article  PubMed  Google Scholar 

  • Hoffman DW, Giacobini E (1980) Characteristics of norepinephrine uptake in developing peripheral nerve terminals. Brain Res 201:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DW, Marchi M, Giacobini E (1980) Norepinephrine uptake in aging adrenergic nerve terminals. Neurobiol Aging 1:65–68

    Article  PubMed  CAS  Google Scholar 

  • Holmgren I (1982) Synaptic organization of the dopaminergic neurons in the retina of the cynomolgus monkey. Invest Ophthalmol Vis Sci 22:8–24

    PubMed  CAS  Google Scholar 

  • Hoyng PF, van Alphen GW (1981) Behavior of IOP and pupil size after topical tranylcypromine in the rabbit eye. Doc Ophthalmol 51:225–234

    Article  PubMed  CAS  Google Scholar 

  • Hoyng PH, van Alphen GW, Haddeman E (1982) Does prostacyclin mediate alpha adrenergic induced hypotension? Doc Ophthalmol 53:159–171

    Article  PubMed  CAS  Google Scholar 

  • Innemee HC, van Zwieten PA (1982) The role of beta2-adrenoceptors in the IOP-lowering effect of adrenaline. Albrecht von Graefes Arch Klin Exp Ophthalmol 218:297–300

    CAS  Google Scholar 

  • Innemee HC, de Jonge A, van Meel JCA, Timmermans PB, van Zwieten PA (1981) The effect of selective α1- and α2- adrenoceptor stimulation on intraocular pressure in the conscious rabbit. Naunyn Schmiedebergs Arch Pharmacol 316:294–298

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL (1967) The uptake and storage of noradrenaline in sympathetic nerves. Cambridge University Press, London

    Google Scholar 

  • Iversen LL, Quik M, Emson PC, Dowling JE, Watling KJ (1980) Further evidence for the existence of multiple receptors for dopamine in the central nervous system. In: Pepeu G, Kuhar MJ, Enna SJ (eds) Receptors for neurotransmitters and peptide hormones. Raven, New York, pp 193–202

    Google Scholar 

  • Jacobowitz D, Laties AM (1968) Direct adrenergic innervation of a teleost melanophore. Anat Rec 162:501–504

    Article  PubMed  CAS  Google Scholar 

  • Jones RF, Maurice DM (1966) New methods of measuring the rate of aqueous flow in man with fluorescein. Exp Eye Res 5:208–220

    Article  PubMed  CAS  Google Scholar 

  • Joo I, Wollemann M (1980) The effect of catecholamines and of their inhibitors on the solubilized adenylate cyclase activity of bovine retina. Exp Eye Res 31:659–663

    Article  PubMed  CAS  Google Scholar 

  • Joseph DR (1921) The inhibitory influence of the cervical sympathetic nerve upon the sphincter muscle of the iris. Am J Physiol 55:279–280

    Google Scholar 

  • Kaback MB, Podos SM, Harbin TS Jr, Mandell A, Becker B (1976) The effects of dipivalyl epinephrine on the eye. Am J Ophthalmol 81:768–772

    PubMed  CAS  Google Scholar 

  • Kamp CW, Morgan WW (1982) Benzodiazepines suppress the light response of retinal dopaminergic neurons in vivo. Eur J Pharmacol 77:343–346

    Article  PubMed  CAS  Google Scholar 

  • Kass MA, Reid TW, Neufeld AH, Bausher LP, Sears ML (1976) The effect of d-isopro-terenol on intraocular pressure in the rabbit, monkey and man. Invest Ophthalmol 15:113–118

    PubMed  CAS  Google Scholar 

  • Kass MA, Shin DH, Cooper DG (1977) The ocular hypotensive effect of epinephrine in high and low corticosteroid responders. Invest Ophthalmol Vis Sci 16:530–531

    PubMed  CAS  Google Scholar 

  • Kato S, Teranishi T, Kuo CH, Negishi K (1982) 5-Hydroxytryptamine stimulates [3 H]dopamine release from the fish retina. J Neurochem 39:493–498

    Article  PubMed  CAS  Google Scholar 

  • Katz IM (1978) Beta blockers and the eye: an overview. Ann Ophthalmol 10:847–850

    PubMed  CAS  Google Scholar 

  • Katz IM, Berger ET (1979) Effects of iris pigmentation on response of ocular pressure to timolol. Surv Ophthalmol 23:395–398

    Article  PubMed  CAS  Google Scholar 

  • Katz IM, Hubbard WA, Getson AJ (1976) Intraocular pressure decrease in normal volunteers following timolol ophthalmic solution. Invest Ophthalmol 14:489–492

    Google Scholar 

  • Kaufman PL, Barany EH (1981) Adrenergic drug effects on aqueous outflow facility following ciliary muscle retrodisplacement in the cynomolgus monkey. Invest Ophthalmol 20:644–651

    CAS  Google Scholar 

  • Keryer G, Rossignol B (1976) Effect of carbachol on 45Ca uptake and protein secretion in rat lacrimal gland. Am J Physiol 230:99–104

    PubMed  CAS  Google Scholar 

  • Kitazawa Y, Nose H, Horie T (1975) Chemical sympathectomy with 6-hydroxydopamine in the treatment of primary open angle glaucoma. Am J Ophthalmol 79:98–103

    PubMed  CAS  Google Scholar 

  • Klyce SD, Wong RKS (1977) Site and mode of adrenaline action of chloride transport across the rabbit corneal epithelium. J Physiol (Lond) 266:777–799

    CAS  Google Scholar 

  • Klyce SD, Neufeld AH, Zadunaisky JA (1973) The activation of chloride transport by epinephrine and Db cyclic AMP in the cornea of the rabbit. Invest Ophthalmol 12:127–139

    PubMed  CAS  Google Scholar 

  • Klyce SD, Palkama KA, Härkönen M, Marshall WS, Huhtaniitty S, Mann KP, Neufeld AH (1982) Neural serotonin stimulates chloride transport in the rabbit corneal epithelium. Invest Ophthalmol Vis Sci 23:181–192

    PubMed  CAS  Google Scholar 

  • Kolker AE, Hetherington J Jr (1976) Becker and Shaffer’s diagnosis and therapy of the glaucomas, 4th edn. Mosby, St. Louis

    Google Scholar 

  • Kondo K, Sears M (to be published) Influence of drugs upon the ciliary channels.

    Google Scholar 

  • Korey MS, Hodapp E, Kass MA, Goldberg I, Gordon M, Becker B (1982) Timolol and epinephrine: long-term evaluation of concurrent administration. Arch Ophthalmol 100:742–745

    Article  PubMed  CAS  Google Scholar 

  • Kosichenko LP (1960) The character of the 24-h periodicity of mitosis in the corneal epithelium of various laboratory animals. Bull Exp Biol Med 49:617–619

    Article  Google Scholar 

  • Koss MC, San LC (1976) Analysis of clonidine-induced mydriasis. Invest Ophthalmol 15:566–570

    PubMed  CAS  Google Scholar 

  • Kramer SG (1971) Dopamine: a retinal neurotransmitter. I. Retinal uptake, storage and light-stimulated release of H 3 -dopamine in vivo. Invest Ophthalmol 10:438–452

    PubMed  CAS  Google Scholar 

  • Kramer SG (1980) Epinephrine distribution after topical administration to phakic and aphakic eyes. Trans Am Ophthalmol Soc 78:947–982

    PubMed  CAS  Google Scholar 

  • Kramer SG, Potts AM (1971) Catecholamine metabolite formation in the iris and ciliary body in vivo. Am J Ophthalmol 72:939–946

    PubMed  CAS  Google Scholar 

  • Kramer SG, Potts AM, Mangnall Y (1972) Autoradiographic localization of catecholamines in the uveal tract. 1. Light microscopic study. Am J Ophthalmol 74:129–133

    PubMed  CAS  Google Scholar 

  • Krejci L, Krejocova H (1973) Combined effects of corticosteroids and antiglaucoma drugs on corneal epithelium. A comparative tissue culture study. Ophthalmol Res 5:186–192

    Article  Google Scholar 

  • Krejci L, Krejocova H (1974) Changes in pupil diameter and effects on corneal tissue cultures from topically administered N-butyl gallate (COMT inhibitor) and epinephrine. Ophthalmol Res 6:15–22

    Article  CAS  Google Scholar 

  • Krieglstein GK (1978) Die Wirkung von Timolol-Augentropfen auf den Augeninnendruck bei Glaucoma simplex. Klin Monatsbl Augenheilkd 172:667–685

    Google Scholar 

  • Krieglstein GK, Leydhecker W (1978) The dose-response relationships of dipivalyl epinephrine in open-angle glaucoma. Albrecht von Graefes Arch Klin Ophthalmol 205:141–146

    Article  CAS  Google Scholar 

  • Krieglstein GK, Langham ME, Leydhecker W (1978) The peripheral and central neural actions of clonidine in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 17:149–158

    PubMed  CAS  Google Scholar 

  • Kronfeld PC (1964) Dose-effect relationships as an aid in the evaluation of ocular hypotensive drugs. Invest Ophthalmol 3:258–265

    PubMed  CAS  Google Scholar 

  • Kronfeld PC (1967) The efficacy of combination of ocular hypotensive drugs. Arch Ophthalmol 78:140–146

    Article  PubMed  CAS  Google Scholar 

  • Krupin T, Weiss A, Becker B, Holmberg N, Fritz C (1977) Increased intraocular pressure following topical azide or nitroprusside. Invest Ophthalmol Vis Sci 16:1002–1007

    PubMed  CAS  Google Scholar 

  • Kupfer C, Sanderson P (1968) Determination of pseudofacility in the eye of man. Arch Ophthalmol 80:194–196

    Article  PubMed  CAS  Google Scholar 

  • Langer SZ (1973) The regulation of transmitter release elicited by nerve stimulation through presynaptic feed-back mechanism. In: Usdin E, Snyder SH (eds) Frontiers in catecholamine research. Pergamon, New York, pp 543–549

    Google Scholar 

  • Langer SZ (1974) Presynaptic regulation of catecholamine release. Biochem Pharmacol 23:1793–1800

    Article  PubMed  CAS  Google Scholar 

  • Langer SZ, Dubocovich ML (1978) Recent advances in the pharmacology of adrenoceptors, 1st edn. Elsevier/North Holland Biomedical, New York, pp 181–189

    Google Scholar 

  • Langer SZ, Briley MS, Raisman R (1980) Regulation of neurotransmission through presynaptic receptors and other mechanisms: possible clinical relevance and therapeutic potential. In: Pepeu G, Kuhar MJ, Enna SJ (eds). Receptors for neurotransmitters and peptide hormones. Raven, New York, pp 203–212

    Google Scholar 

  • Langham ME (1975) Adrenergic tachyphylaxis in animal and human eyes. Exp Eye Res 20:174–175

    Article  PubMed  CAS  Google Scholar 

  • Langham ME (1977) The aqueous outflow system and its response to autonomic receptor agonists. Exp Eye Res [Suppl] 311:322

    Google Scholar 

  • Langham ME, Diggs E (1974) Beta adrenergic responses in the eyes of rabbits, primates and man. Exp Eye Res 19:281–295

    Article  PubMed  CAS  Google Scholar 

  • Langham ME, Krieglstein GK (1976) The biphasic intraocular pressure response of conscious rabbits to epinephrine. Invest Ophthalmol 15:119–127

    PubMed  CAS  Google Scholar 

  • Laor N, Korczyn AD, Nemet P (1977) Sympathetic pupillary activity in infants. Pediatrics 59:195–198

    PubMed  CAS  Google Scholar 

  • Lasater EM, Dowling JE (1982) Carp horizontal cells in culture respond selectively to 1-glutamate and its agonists. Proc Natl Acad Sci USA 79:936–940

    Article  PubMed  CAS  Google Scholar 

  • Laties AM (1967) Central retinal artery innervation. Arch Ophthalmol 77:405–409

    Article  PubMed  CAS  Google Scholar 

  • Laties AM (1974) Ocular melanin and the adrenergic innervation to the eye. Trans Am Ophthalmol Soc 72:560–605

    PubMed  CAS  Google Scholar 

  • Laties AM, Lerner A (1975) Iris colour and relationship of tyrosinase activity to adrenergic innervation. Nature 255:152–153

    Article  CAS  Google Scholar 

  • Lee DA; Brubaker RF, Nagataki S (1981) Effect of thymoxamine on aqueous humor formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci 21:805–811

    PubMed  CAS  Google Scholar 

  • Leopold IH, Murray DL (1979) Ocular hypotensive action of labetalol. Am J Ophthalmol 88:427–431

    PubMed  CAS  Google Scholar 

  • Leydhecker HCV (1977) Sympathomimetics and sympatholytics in the treatment of glaucoma. Klin Monatsbl Augenheilkd 171:538–546

    Google Scholar 

  • Linner E (1956) Further studies of the episcleral venous pressure in glaucoma. Am J Ophthalmol 41:646–651

    PubMed  CAS  Google Scholar 

  • Linner E (1959) Adrenocortical steroids and aqueous humor dynamics. Doc Ophthalmol 13:210–224

    Article  PubMed  CAS  Google Scholar 

  • Little JM, Centifanto YM, Kaufman HE (1969) Immunoglobulins in tears. Am J Ophthalmol 68:898–905

    PubMed  CAS  Google Scholar 

  • Lorenzetti OJ (1971) Dose-dependent influence of topically instilled adrenergic agents on intraocular pressure and outflow facility in the rabbit. Exp Eye Res 12:80–87

    Article  PubMed  CAS  Google Scholar 

  • Malik AB, van Heuven WAJ, Satler LF (1976) Effects of isoproterenol and norepinephrine on regional ocular blood flows. Invest Ophthalmol Vis Sci 15:492–495

    CAS  Google Scholar 

  • Malmfors T (1965) The adrenergic innervation of the eye as demonstrated by fluorescence microscopy. Acta Physiol Scand 65:259–267

    Article  PubMed  CAS  Google Scholar 

  • Mandell AI, Stentz F, Kitabchi AE (1978) Dipivalyl epinephrine: a new pro-drug in the treatment of glaucoma. Ophthalmology (Rochester) 85:268–275

    CAS  Google Scholar 

  • Mapstone R (1970) Safe mydriasis. Br J Ophthalmol 54:690–692

    Article  PubMed  CAS  Google Scholar 

  • Mapstone R (1977) Dilating dangerous pupils. Br J Ophthalmol 61:517–524

    Article  PubMed  CAS  Google Scholar 

  • Marc RE (1982) Spatial organization of neurochemically classified interneurons of the goldfish retina. I. Local patterns. Vision Res 22:589–608

    Article  PubMed  CAS  Google Scholar 

  • Masuda K, Izawa Y, Mishima S (1975) Prostaglandins and glaucomatocyclitic crisis. Jpn J Ophthalmol 19:368–375

    Google Scholar 

  • Matheny JL, Ahlquist RP (1974) Adrenoceptor alteration by temperature in iris dilator muscle of rabbit. Arch Int Pharmacodyn Ther 209:197–203

    PubMed  CAS  Google Scholar 

  • Maurice D (1983) A simple method for measuring aqueous flow in the rabbit. Invest Ophthalmol Vis Sci [Suppl] 24:5

    Google Scholar 

  • McClure DA (1975) The effect of a pro-drug of epinephrine (dipivalyl epinephrine) in glaucoma. General pharmacology, toxicology and clinical experience. In: Higuchi T, Stella V (eds) Pro-drugs as novel drug delivery systems. Amer Chemical Society, Washington D.C. pp 224–236

    Chapter  Google Scholar 

  • McGuire J (1970) Adrenergic control of melanocytes. Arch Dermatol 101:173–180

    Article  PubMed  CAS  Google Scholar 

  • Mehra KS, Roy PN, Singh R (1974) Pargyline drops in glaucoma. Arch Ophthalmol 92:453–454

    Article  PubMed  CAS  Google Scholar 

  • Melikian HE, Lieberman TW, Leopold LH (1971) Ocular pigmentation and pressure and outflow response to pilocarpine and epinephrine. Am J Ophthalmol 72:70–73

    PubMed  CAS  Google Scholar 

  • Merck, Sharp & Dohme Research Laboratories Report (1974) Timolol maleate ophthalmic solutions. Ocular studies in animals, 18 December 1974

    Google Scholar 

  • Merck, Sharp & Dohme Research Laboratories Report (1977) Timolol maleate ophthalmic solutions. Preclinical evaluation, 15 September 1977

    Google Scholar 

  • Miescher G (1923) Pigmentgenese im Auge nebst Bemerkungen über die Natur des Pigmentkorns. Arch Mikrosk Anat Entwicklungsgesch 97:326–396

    Article  Google Scholar 

  • Miichi H, Nagataki S (1982) Effects of cholinergic drugs and adrenergic drugs on aqueous humor formation in the rabbit eye. Jpn J Ophthalmol 26:425–436

    PubMed  CAS  Google Scholar 

  • Miller WH (ed) (1981) Molecular mechanisms of photoreceptor transduction. Academic, New York

    Google Scholar 

  • Mishima H, Sears M, Bausher L, Gregory G (1982a) Ultracytochemistry of cholera-toxin binding sites in ciliary processes. Cell Tissue Res 223:241–253

    Article  PubMed  CAS  Google Scholar 

  • Mishima H, Bausher L, Sears M, Gochu M, Ono H, Gregory D (1982b) Fine structural studies of ciliary processes after treatment with cholera toxin or its B subunit. Graefe’s Arch Clin Exp Ophthalmol 219:272–278

    Article  CAS  Google Scholar 

  • Mishima S (1957) The effects of the denervation and the stimulation of the sympathetic and trigeminal nerve on the mitotic rate of the corneal epithelium in the rabbit. Jpn J Ophthalmol 1:65–73

    Google Scholar 

  • Mishima S (1981) Clinical pharmacokinetics of the eye. Invest Ophthalmol Vis Sci 21:504–541

    PubMed  CAS  Google Scholar 

  • Mishima S (1982) Ocular effects of beta adrenergic agents. Surv Ophthalmol 27:187–208

    Article  PubMed  CAS  Google Scholar 

  • Mishima S, Takase M, Araie M, Kitazawa Y (1983) Beta adrenergic agonists and antagonists: clinical pharmacokinetics. In: Krieglstein G, Leydhecker HW (eds) Glaucoma update II. International glaucoma symposium, Carmel, California, 22–27 October 1982. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mittag T, Tormay A (1981) Adrenergic receptors in iris-ciliary body direct ligand binding studies. Invest Ophthalmol Vis Sci [Suppl] 20:198

    Google Scholar 

  • Mittag T, Tormay A, Messenger M (1982) The ocular hypotensive response to pirbuterol and nylidrin: receptor mechanisms in the rabbit eye. Invest Ophthalmol Vis Sci [Suppl] 22:91

    Google Scholar 

  • Morgan TR, Green K, Bowman K (1981) Effects of adrenergic agonists upon regional ocular blood flow in normal and ganglionectomized rabbits. Exp Eye Res 32:691–697

    Article  PubMed  CAS  Google Scholar 

  • Morgan WW, Kamp CW (1982) Postnatal development of the light response of the dopaminergic neurons in the rat retina. J Neurochem 39:283–285

    Article  PubMed  CAS  Google Scholar 

  • Morone G (1953) Indagini sull’ attività aminossidasica dell’ iride dopo la resezione del simpatico cervicale. Riv Otoneurooftalmol 28:317–322

    CAS  Google Scholar 

  • Moss J, Vaughn M (1978) Isolation of an avian erythrocyte protein processing ADP-ribosyltransferase activity and capable of activating adenyl cyclase. Proc Natl Acad Sci USA 75:3621–3624

    Article  PubMed  CAS  Google Scholar 

  • Motulsky HJ, Insel PA (1982) Adrenergic receptors in man. Direct identification, physiologic regulation and clinical alterations. N Engl J Med 307:18–29

    Article  PubMed  CAS  Google Scholar 

  • Murray DL, Leopold IH (1980) Evidence for more than one type of alpha-adrenergic receptor in rabbit eyes. Invest Ophthalmol Vis Sci [Suppl] 19:66

    Google Scholar 

  • Murray DL, Leopold IH (1981) Alpha-adrenergic receptors and intraocular pressure. Invest Ophthalmol Vis Sci [Suppl] 20:105

    Google Scholar 

  • Nagasubramanian S, Tripathi RC, Poinoosawmy D, Gloster J (1976) Low concentration guanethidine and adrenaline therapy of glaucoma. Trans Ophthalmol Soc UK 96:179–183

    PubMed  CAS  Google Scholar 

  • Nagataki S (1977) Effects of adrenergic drugs on aqueous humor dynamics in man. Acta Soc Ophthalmol Jpn 81:1795–1800

    CAS  Google Scholar 

  • Nagataki S, Brubaker RF (1981) Early effect of epinephrine on aqueous formation in the normal human eye. Ophthalmology (Rochester) 88:278–282

    CAS  Google Scholar 

  • Nathanson JA (1980) Adrenergic regulation of intraocular pressure: identification of beta2-adrenergic-stimulated adenylate cyclase in ciliary process epithelium. Proc Natl Acad Sci USA 77:7420–7424

    Article  PubMed  CAS  Google Scholar 

  • Nathanson JA (1981a) Human ciliary process adrenergic receptor: pharmacological characterization. Invest Ophthalmol Vis Sci 21:798–804

    PubMed  CAS  Google Scholar 

  • Nathanson JA (1981b) Effects of a potent and specific beta2-adrenoceptor antagonist on intraocular pressure. Br J Pharmacol 73:97–100

    PubMed  CAS  Google Scholar 

  • Negishi K, Teranishi T, Kato S (1982a) Growth zone of the juvenile goldfish retina revealed by fluorescent flat mounts. J Neurosci Res 7:321–330

    Article  PubMed  CAS  Google Scholar 

  • Negishi K, Teranishi T, Kato S (1982b) New dopaminergic and indoleamine-accumulating cells in the growth zone of goldfish retinas after neurotoxic destruction. Science 216:747–749

    Article  PubMed  CAS  Google Scholar 

  • Neufeld AH (1979) Experimental studies on the mechanism of action of timolol. Surv Ophthalmol 23:363–370

    Article  PubMed  CAS  Google Scholar 

  • Neufeld AH (1981) Epinephrine and timolol: how do these drugs lower intraocular pressure? Ann Ophthalmol 13:1109–1111

    PubMed  CAS  Google Scholar 

  • Neufeld AH, Page ED (1975) Regulation of adrenergic neuromuscular transmission in the rabbit iris. Exp Eye Res 20:549–561

    Article  PubMed  CAS  Google Scholar 

  • Neufeld AH, Page ED (1977) In vitro determination of the ability of drugs to bind to adrenergic receptors. Invest Ophthalmol Vis Sci 16:1118–1124

    PubMed  CAS  Google Scholar 

  • Neufeld AH, Sears ML (1974) Cyclic AMP in ocular tissues of the rabbit, monkey and human. Invest Ophthalmol 14:688–689

    Google Scholar 

  • Neufeld AH, Jampol LM, Sears ML (1972) Cyclic-AMP in the aqueous humor: the effects of adrenergic agents. Exp Eye Res 14:242–250

    Article  PubMed  CAS  Google Scholar 

  • Neufeld AH, Chavis RM, Sears ML (1973) Degeneration release of norepinephrine causes transient ocular hyperemia mediated by prostaglandins. Invest Ophthalmol 12:167–175

    PubMed  CAS  Google Scholar 

  • Neufeld AH, Zawistowski KA, Page ED, Bromberg BB (1978) Influences on the density of beta adrenergic receptors in the cornea and iris-ciliary body of the rabbit. Invest Ophthalmol Vis Sci 17:1069–1075

    PubMed  CAS  Google Scholar 

  • Neufeld AH, Ledgard SE, Jumblatt MM, Klyce SD (1982) Serotonin–stimulated cyclic AMP synthesis in the rabbit corneal epithelium. Invest Ophthalmol Vis Sci 23:193–198

    PubMed  CAS  Google Scholar 

  • Nielsen NV (1978) Timolol: hypotensive effect used alone and in combination for treatment of increased intraocular pressure. Acta Ophthalmol (Copenh) 56:504–509

    Article  CAS  Google Scholar 

  • Nilsson O (1964) The relationship between nerves and smooth muscle cells in the rat iris. I. The dilatator muscle. Z Zellforsch Mikrosk Anat 64:166–171

    Google Scholar 

  • Nishida S, Sears ML (1969a) Fine structural innervation of the dilator muscle of the iris of the albino guinea pig studied with permanganate fixation. Exp Eye Res 8:292–296

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Sears ML (1969b) Dual innervation of the iris sphincter muscle of the albino guinea pig. Exp Eye Res 8:467–469

    Article  PubMed  CAS  Google Scholar 

  • Ochi J, Konishi M, Yoshikawa H, Sano Y (1968) Fluorescence and electron microscopic evidence for the dual innervation of the iris sphincter muscle of the rabbit. Z Zellforsch Mikrosk Anat 91:90–95

    Article  PubMed  CAS  Google Scholar 

  • Odin L, O’Donnell FE Jr (1982) Adrenergic influence on iris stromal pigmentation: evidence for alpha-adrenergic receptors. Invest Ophthalmol Vis Sci 23:528–530

    PubMed  CAS  Google Scholar 

  • Ohrstrom A (1982) Dose response of oral timolol combined with adrenaline. Br J Ophthalmol 66:242–246

    Article  PubMed  CAS  Google Scholar 

  • Page ED, Neufeld AH (1978) Characterization of α and β-adrenergic receptors in membranes prepared from the rabbit iris before and after development of supersensitivity. Biochem Pharmacol 27:953–958

    Article  PubMed  CAS  Google Scholar 

  • Parkinson D, Rando RR (1983) Effect of light on dopamine turnover and metabolism in rabbit retina. Invest Ophthalmol Vis Sci 24:384–388

    PubMed  CAS  Google Scholar 

  • Parod RJ, Putney JW Jr (1978) An alpha adrenergic receptor mechanism controlling potassium permeability in the rat lacrimal gland acinar cell. J Physiol (Lond) 281:359–369

    CAS  Google Scholar 

  • Patil PN (1969) Adrenergic receptors of the bovine iris sphincter. J Pharmacol Exp Ther 166:299–307

    PubMed  CAS  Google Scholar 

  • Patil PN (1972) Cocaine binding by the pigmented and the nonpigmented iris and its relevance to the mydriatic effect. Invest Ophthalmol 11:739–746

    PubMed  CAS  Google Scholar 

  • Patil PN, LaPidus JB (1972) Stereoisomerism in adrenergic drugs. In: Reviews of physiology, biochemistry, and experimental pharmacology, vol 66. Springer, Berlin Heidelberg New York, pp 213–260

    Google Scholar 

  • Patil PN, Trendelenburg U (1982) The extraneuronal uptake and metabolism of 3 H-iso-prenaline in the rabbit iris. Naunyn Schmiedebergs Arch Pharmacol 318:158–165

    Article  PubMed  CAS  Google Scholar 

  • Phillips CJ, Howitt G, Rowland J (1967) Propranolol as ocular hypotensive agent. Br J Ophthalmol 51:222–226

    Article  PubMed  CAS  Google Scholar 

  • Pholpramool C (1979) Secretory effect of prostaglandins on the rabbit lacrimal gland in vivo. Prostaglandins Med 3:185–192

    Article  PubMed  CAS  Google Scholar 

  • Plance C, Sole P, Ourgaud AG, Hamard H, Vidal R (1978) Double-observer comparison of timolol maleate and pilocarpine in open angle glaucoma. Proc int symp glaucoma XIII, International congress of ophthalmology, Kyoto, Japan, pp 41–48

    Google Scholar 

  • Poos F (1927) Pharmakologische und physiologische Untersuchungen an den isolierten Irismuskeln. Arch Exp Pathol Pharmakol 126:307–351

    Article  CAS  Google Scholar 

  • Potter DE (1981) Adrenergic pharmacology of aqueous humor dynamics. Pharmacol Rev 33:133–153

    PubMed  CAS  Google Scholar 

  • Potter DE, Rowland JM (1978) Adrenergic drugs and intraocular pressure: effects of selective β-adrenergic agonists. Exp Eye Res 27:615–625

    Article  PubMed  CAS  Google Scholar 

  • Powell CE, Slater IH (1958) Blocking of inhibitory adrenergic receptors by dichloro analog of ispoproterenol. J Pharmacol Exp Ther 122:480–488

    PubMed  CAS  Google Scholar 

  • Proll MA, Morgan WW (1982) Adaptation of retinal dopamine neuron activity in light-adapted rats to darkness. Brain Res 241:359–361

    Article  PubMed  CAS  Google Scholar 

  • Proll MA, Kamp CW, Morgan WW (1982) Use of liquid chromatography with electrochemistry to measure effects of varying intensities of white light on DOPA accumulation in rat retinas. Life Sci 30:11–19

    Article  PubMed  CAS  Google Scholar 

  • Quilliam JP (1949) A quantitative method for the study of the reactions of the isolated cat’s iris. J Physiol (Lond) 110:237–247

    Google Scholar 

  • Radius R, Langham ME (1973) Cyclic AMP and the ocular responses to norepinephrine. Exp Eye Res 17:219–229

    Article  PubMed  CAS  Google Scholar 

  • Richardson KC (1968) Cholinergic and adrenergic axons in methylene blue-stained rat iris: an electron microscopical study. Life Sci 7:509–604

    Article  Google Scholar 

  • Ritch R, Hargette NA, Podos SM (1978) The effect of 1.5% timolol maleate on intraocular pressure. Acta Ophthalmol (Copenh) 56:6–10

    Article  CAS  Google Scholar 

  • Ross RA, Drance SM (1970) Effect of topically applied isoproterenol on aqueous dynamics in man. Arch Ophthalmol 83:39–46

    Article  PubMed  CAS  Google Scholar 

  • Rosser MJ, Sears ML (1968) Further studies on the mechanism of the increased outflow of aqueous humor from the eyes of rabbits twenty-four hours after cervical sympathetic ganglionectomy. J Pharmacol Exp Ther 164:280–289

    PubMed  CAS  Google Scholar 

  • Rowland JM, Potter DE (1979) Effects of adrenergic drugs on aqueous cAMP and cGMP and intraocular pressure. Albrecht von Graefes Arch Klin Exp Ophthalmol 212:67–77

    Article  Google Scholar 

  • Rowland JM, Potter DE (1980a) Adrenergic drugs and intraocular pressure: suppression of ocular hypertension induced by water loading. Exp Eye Res 30:93–104

    Article  PubMed  CAS  Google Scholar 

  • Rowland JM, Potter DE (1980b) Adrenergic drugs and intraocular pressure: the hypertensive effect of epinephrine. Ophthalmol Res 12:221–229

    Article  CAS  Google Scholar 

  • Rowland JM, Potter DE (1981) Steric structure activity relationships of various adrenergic agonists: ocular and systemic effects. Current Eye Res 1:25–35

    Article  CAS  Google Scholar 

  • Ruegg JC, Hess WR (1953) Die Wirkung von Adrenalin, Noradrenalin und Acetylcholin auf die isolierten Irismuskeln. Helv Physiol Pharmacol Acta 11:216–230

    PubMed  CAS  Google Scholar 

  • Sallman L von, Grimes P (1971) Isoproterenol-induced changes of cell proliferation in rat lens epithelium. Invest Ophthalmol 10:943–947

    Google Scholar 

  • Sallman L von, Grimes P (1974) Effects of isoproterenol and cyclic AMP derivatives on cell division in cultured rat lenses. Invest Ophthalmol 13:210–218

    Google Scholar 

  • Salminen L, Aaltonen H, Jantti V (1980) Mydriatic effect of low dose phenylephrine. Ophthalmic Res 12:235–239

    Article  Google Scholar 

  • Sapse AT, Bonavida B, Stone W, Sercaz EE (1969) Proteins in human tears. I. Immunoelectrophoretic patterns. Arch Ophthalmol 81:815–919

    Article  PubMed  CAS  Google Scholar 

  • Schachtschabel DO, Bigalke B, Rohen JW (1977) Production of glycosaminoglycans by cell cultures of the trabecular meshwork of the primate eye. Exp Eye Res 24:71–80

    Article  CAS  Google Scholar 

  • Schaeppi U, Koella WP (1964a) Adrenergic innervation of cat iris sphincter. Am J Physiol 207:273–278

    PubMed  CAS  Google Scholar 

  • Schaeppi U, Koella WP (1964b) Innervation of the cat iris dilator. Am J Physiol 207:1411–1416

    PubMed  CAS  Google Scholar 

  • Schaeppi U, Rubin R, Koella WP (1966) Electrical stimulation of the isolated cat iris. Am J Physiol 210:1165–1169

    PubMed  CAS  Google Scholar 

  • Schenker HI, Yablonski ME, Podos SM, Linder L (1981) Fluorophotometric study of epinephrine and timolol in human subjects. Arch Ophthalmol 99:1212–1216

    Article  PubMed  CAS  Google Scholar 

  • Sears DE, Sears ML (1974) Blood aqueous barrier and alpha chymotrypsin glaucoma in rabbits. Am J Ophthalmol 77:378–383

    PubMed  CAS  Google Scholar 

  • Sears ML (1965) Adrenergic receptors. Arch Ophthalmol 74:150–151

    Article  PubMed  CAS  Google Scholar 

  • Sears ML (1966a) The mechanism of action of adrenergic drugs in glaucoma. Invest Ophthalmol 5:115–119

    CAS  Google Scholar 

  • Sears ML (1966b) Pressure in the canal of Schlemm and its relation to the site of resistance to outflow of aqueous humor in the eyes of Ethiopian green monkeys. Invest Ophthalmol 5:610–623

    PubMed  CAS  Google Scholar 

  • Sears ML (1971) Development of drugs useful in treatment of glaucoma and their evaluation in both animals, and man, NIH Contract NO1-EY-1-2512

    Google Scholar 

  • Sears ML (1973) Adrenergic supersensitivity of the scorbutic iris. Trans Am Ophthalmol Soc 71:536–557

    PubMed  CAS  Google Scholar 

  • Sears ML (1975) Catecholamines in relation to the eye. In: Astwood E, Greep R (eds) Handbook of physiology. American Physiological Society, Washington DC, pp 553–590

    Google Scholar 

  • Sears ML (1978) Perspectives in glaucoma research. Friedenwald lecture. Invest Ophthalmol Vis Sci 17:6–22

    PubMed  CAS  Google Scholar 

  • Sears ML (1980) The aqueous. In: Moses RA (ed) Adler’s physiology of the eye, 7th edn. Mosby, St. Louis, pp 204–226

    Google Scholar 

  • Sears ML (1982) Perspectives in the medical treatment of glaucoma. In: Krieglstein GK, Leydhecker W (eds) Medikamentöse Glaukomtherapie. Bergmann, Munich

    Google Scholar 

  • Sears ML, Bárány EH (1960) Outflow resistance of rabbit eye. Effect of cervical sympathectomy and adrenergic inhibitors. Arch Ophthalmol 64:839–848

    Article  PubMed  CAS  Google Scholar 

  • Sears ML, Gillis CN (1967) Mydriasis and the increase in outflow of aqueous humor from the rabbit eye after cervical ganglionectomy in relation to the release of norepinephrine from the iris. Biochem Pharmacol 16:777–782

    Article  PubMed  CAS  Google Scholar 

  • Sears ML, Neufeld AH (1975) Adrenergic modulation of the outflow of aqueous humor. Invest Ophthalmol 14:83–86

    PubMed  CAS  Google Scholar 

  • Sears M, Mead A (1983) A major pathway for the regulation of intraocular pressure. In Ophthalmol 6:201–212

    CAS  Google Scholar 

  • Sears ML, Sherk TE (1963) Supersensitivity of the aqueous outflow resistance in rabbits after sympathetic denervation. Nature 197:387–388

    Article  PubMed  CAS  Google Scholar 

  • Sears ML, Sherk TE (1964) The trabecular effect of noradrenalin in the rabbit eye. Invest Ophthalmol 3:157–163

    PubMed  CAS  Google Scholar 

  • Sears ML, Mizuno K, Cintron C, Alter A, Sherk T (1966) Changes in outflow facility and content of norepinephrine in iris and ciliary processes of albino rabbits after cervical ganglionectomy. Invest Ophthalmol 5:312–318

    PubMed  CAS  Google Scholar 

  • Sears ML, Gregory D, Bausher L, Mishima H, Stjernschantz J (1981) A receptor for aqueous humor formation. In: Sears ML (ed) New directions in ophthalmic research. Yale University Press, New Haven, chap 10, pp 163–183

    Google Scholar 

  • Sears M, Caprioli J, Kondo K, Bausher L (to be published) A mechanism for the control of aqueous humor formation. In: Drance S, Neufeld AH (ed) Applied pharmacology in the medical treatment of the glaucomas. Grune & Stratton, New York

    Google Scholar 

  • Seidehamel RJ, Dungan KW, Hickey TE (1975) Specific hypotensive and antihypertensive ocular effects of d-isoproterenol in rabbits. Am J Ophthalmol 79:1018–1025

    PubMed  CAS  Google Scholar 

  • Selinger Z, Cassel D (1981) Role of guanine nucleotides in hormonal activation of adenylate cyclase. In: Dumont JE, Greengard P, Robison GA (eds) Advances in cyclic nucleotide research. Raven Press, New York, pp 15–22

    Google Scholar 

  • Shannon RP, Mead A, Sears ML (1976) The effect of dopamine on the intraocular pressure and pupil of the rabbit eye. Invest Ophthalmol 15:371–380

    PubMed  CAS  Google Scholar 

  • Shell W (1982) Pharmacokinetics of topically applied ophthalmic drugs. Surv Ophthalmol 26:207–218

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GM (1978) Microcircuits in the nervous system. Sci Am 238:92–102

    Article  Google Scholar 

  • Shimizu H, Riley MV, Cole DF (1967) The isolation of whole cells from the ciliary epithelium together with some observations on the metabolism of the two cell types. Exp Eye Res 6:141–151

    Article  PubMed  CAS  Google Scholar 

  • Shiose Y (1970) Electron microscopic studies on blood-retinal and blood-aqueous barrier. Jpn J Ophthalmol 14:73–87

    Google Scholar 

  • Shiose Y, Sears ML (1966) Fine structural localization of nucleoside phosphatase activity in the ciliary epithelium of albino rabbits. Invest Ophthalmol 5:152–165

    CAS  Google Scholar 

  • Smith BR, Murray DL, Leopold IH (1979) Topical prazosin lowers intraocular pressure. Invest Ophthalmol Vis Sci [Suppl] 18:24

    Google Scholar 

  • Spaeth GL (1980) The effect of autonomic agents on the pupil and the intraocular pressure of eyes treated with dexamethasone. Br J Ophthalmol 64:426–429

    Article  PubMed  CAS  Google Scholar 

  • Spinowitz BS, Zadunaisky JA (1979) Action of adenosine on chloride active transport of isolated frog cornea. Am J Physiol 237:F121–F127

    PubMed  CAS  Google Scholar 

  • Stjärne L, Hedqvist P, Lagercrantz H, Wennmalm A (eds) (1981) Chemical neurotransmission, 75 years. Academic, London

    Google Scholar 

  • Stjernschantz J, Bill A (1980) Vasomotor effects of facial nerve stimulation: noncholinergic vasodilation in the eye. Acta Physiol Scand 109:45–50

    Article  PubMed  CAS  Google Scholar 

  • Szalay J (1980) Effect of beta adrenergic agents on blood vessels of the rat iris. II. Morphological modifications of the vessel wall. Exp Eye Res 31:299–311

    Article  PubMed  CAS  Google Scholar 

  • Szalay J, Fliegenspan J, Zaager A, Tobin G, Cross S (1980) Effect of beta-adrenergic agents on blood vessels of the rat iris. I. Permeability to carbon particles. Exp Eye Res 31:289–297

    Article  PubMed  CAS  Google Scholar 

  • Takase M (1976) Effects of topical isoproterenol and propranolol on flow-rate of aqueous in rhesus monkey. Acta Soc Ophthalmol Jpn 80:379–383

    CAS  Google Scholar 

  • Taylor IH (1982) Electron microscopy of aminergic retinal neurons. Acta Ophthalmol [Suppl](Copenh) 152:1–40

    CAS  Google Scholar 

  • Terenghi G, Polak JM, Probert L, McGregor GP, Ferri GL, Blank MA, Butler JM, Unger WG, Zhang S, Cole DF, Bloom SR (1982) Mapping quantitative distribution and origin of substance P and VIP containing nerves in the uvea of guinea pig eye. Histochemistry 75:399–417

    Article  PubMed  CAS  Google Scholar 

  • Townsend DJ, Brubaker RF (1980) Immediate effect of epinephrine on aqueous formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci 19:256–266

    PubMed  CAS  Google Scholar 

  • Trendelenburg U (1980) A kinetic analysis of extraneuronal uptake and metabolism of catecholamines. In: Reviews of Physiology, Biochemistry, and Pharmacology, vol 87. Springer, Berlin Heidelberg New York, pp 33–115

    Google Scholar 

  • Trendelenburg U, Höhn D, Graefe KH, Pluchino S (1971) The influence of block of catechol-O-methyltransferase on the sensivitity of isolated organs to catecholamines. Naunyn Schmiedebergs Arch Pharmakol 271:59–92

    Article  PubMed  CAS  Google Scholar 

  • Trokel S (1964) Measurement of ocular blood flow and volume by reflective densitometry. Arch Ophthalmol 71:88–92

    Article  PubMed  CAS  Google Scholar 

  • Trokel S (1965) Quantitative studies of choroidal blood flow by reflective densitometry. Invest Ophthalmol 4:1129–1140

    PubMed  CAS  Google Scholar 

  • Trope GE, Clark B (1982) Beta adrenergic receptors in pigmented ciliary processes. Br J Ophthalmol 66:788–792

    Article  PubMed  CAS  Google Scholar 

  • Trope GE, Clark B, Titinchi SJS (1982) Identification of beta-adrenergic receptors in the pigmented mammalian iris-ciliary diaphragm. Exp Eye Res 34:153–157

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara S, Maezawa N (1978) Cytochemical localization of adenyl cyclase in the rabbit ciliary body. Exp Eye Res 26:99–106

    Article  PubMed  CAS  Google Scholar 

  • Turner P, Sneddon JM (1968) Alpha receptor blockade by thymoxamine in the human eye. Clin Pharmacol Ther 9:45–49

    PubMed  CAS  Google Scholar 

  • Ueno K (1976) The effect of beta and alpha adrenergic drugs on the ciliary body of the rabbit eye: an electron microscopical study. Folia Ophthalmol Jpn 27:1012–1015

    CAS  Google Scholar 

  • Ulshafer RJ, Garcia CA, Hollyfield JG (1980) Sensitivity of photoreceptors to elevated levels of cGMP in the human retina. Invest Ophthalmol Vis Sci 19:1236–1241

    PubMed  CAS  Google Scholar 

  • Unger WG (1979) Prostaglandin mediated inflammatory changes induced by alpha adrenoceptor stimulation in the sympathectomized rabbit eye. Albrecht von Graefes Arch Klin Exp Ophthalmol 211:289–300

    Article  PubMed  CAS  Google Scholar 

  • Unger WG, Butler JM, Cole DF (1981) Prostaglandin and an increased sensitivity of the sympathectically denervated rabbit eye to laser-induced irritation of the iris. Exp Eye Res 32:699–707

    Article  PubMed  CAS  Google Scholar 

  • Ungricht AL (1982) Retention of timolol in the ocular tissues of the rabbit. Thesis, Yale University

    Google Scholar 

  • Van Alphen GWH, Robinette SL, Macri FJ (1964) The adrenergic receptors of the intraocular muscles of the cat. Int J Neuropharmacol 2:259–272

    CAS  Google Scholar 

  • Van Alphen GWH, Kern R, Robinette SL (1965) Adrenergic receptors of the intraocular muscles. Arch Ophthalmol 74:253–259

    Article  Google Scholar 

  • Van Buskirk R, Dowling JE (1982) Calcium alters the sensitivity of intact horizontal cells to dopamine antagonists. Proc Natl Acad Sci USA 79:3350–3354

    Article  PubMed  Google Scholar 

  • Van Haeringen NJ, Ensink FTE, Glasius E (1978) The peroxidase-thiocyanate-hydrogen-peroxidase system in tear fluid and saliva of different species. Exp Eye Res 28:343–347

    Article  Google Scholar 

  • Vareilles P, Silverstone DL, Plazonnet B, LeDouarec J-C, Sears ML, Stone CA (1977) Comparison of the effects of timolol and other adrenergic agents on intraocular pressure in rabbit. Invest Ophthalmol Vis Sci 16:987–996

    PubMed  CAS  Google Scholar 

  • Virtanen J, Raij K, Uusitalo R, Uusitalo H, Palkama A (1983) Adenylate cyclase activity and beta-adrenergic receptors in isolated rabbit ciliary epithelium. Invest Ophthalmol Vis Sci [Suppl] 24:5

    Google Scholar 

  • Waitzman MB, Woods WD (1971) Some characteristics of an adenyl cyclase preparation from rabbit ciliary body tissue. Exp Eye Res 12:99–111

    Article  PubMed  CAS  Google Scholar 

  • Walkenbach RJ, LeGrand RD (1982) Inhibition of adenylate cyclase activity in the corneal epithelium by anti-inflammatory steroids. Exp Eye Res 34:161–168

    Article  PubMed  CAS  Google Scholar 

  • Walkenbach RJ, LeGrand RD, Barr RE (1980) Characterization of adenylate cyclase activity in bovine and human corneal epithelium Invest Ophthalmol Vis Sci 19:1080–1086

    PubMed  CAS  Google Scholar 

  • Walter WG, van Gemert AGM, Duyff JW (1954) Kinetics of pupillary dilation induced by administration of l-epinephrine. Acta Physiol Pharmacol Neerl 3:309–324

    PubMed  CAS  Google Scholar 

  • Waltman S, Sears M (1964) Catechol-O-methyltransferase and monoamine oxidase activity in the ocular tissues of albino rabbits. Invest Ophthalmol 3:601–605

    PubMed  CAS  Google Scholar 

  • Wandel T, Spinak M (1981) Toxicity of dipivalyl epinephrine. Ophthalmology (Rochester) 88:259–260

    CAS  Google Scholar 

  • Weekers R, Projot E, Gustin J (1952) Recent advances and future prospects in the medial treatment of ocular hypertension. Br J Ophthalmol 38:742–746

    Article  Google Scholar 

  • Weekers R, Delmarcelle Y, Gustin J (1955) Treatment of ocular hypertension by adrenaline and diverse sympathomimetic amines. Am J Ophthalmol 40:666–672

    PubMed  CAS  Google Scholar 

  • Wei C, Anderson JA, Leopold I (1978) Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephrine. Invest Ophthalmol Vis Sci 17:315–321

    PubMed  CAS  Google Scholar 

  • Weinreb RN, Polansky JR, Kramer SG (1979) Acute intraocular pressure response to steroids in glaucoma. Invest Ophthalmol Vis Sci [Suppl] 18:41

    Google Scholar 

  • Weiss B, Greenberg LH, Cantor E (1980) Denervation supersensitivity in α-adrenergic receptors as a function of age. In: Pepeu G, Kuhar MJ, Enna SJ (eds) Receptors for neurotransmitters and peptide hormones. Raven, New York

    Google Scholar 

  • Wentworth WO, Brubaker RF (1981) Aqueous humor dynamics in a series of patients with third neuron Horner’s eye syndrome. Am J Ophthalmol 92:407–415

    PubMed  CAS  Google Scholar 

  • Wettrell K, Wilke K, Pandolfi M (1977) Effect of adrenergic agonists and antagonists on repeated tonometry and episcleral venous pressure. Exp Eye Res 24:613–619

    Article  PubMed  CAS  Google Scholar 

  • Wikberg JES (1979) Synthesis of [3 H]-acetylcholine in the rabbit lacrimal gland and its release by electrical field stimulation. Acta Physiol Scand 105:108–113

    Article  PubMed  CAS  Google Scholar 

  • Woodcock EA, Johnston CI (1980) α-Adrenergic receptors modulate β-receptor affinity in rat kidney membranes. Nature 286:159–160

    Article  PubMed  CAS  Google Scholar 

  • Wudka E, Leopold IH (1956) Experimental studies of the choroidal vessels. IV. Pharmacologic observations. Arch Ophthalmol 55:857–885

    Article  CAS  Google Scholar 

  • Yablonski ME, Gray JR (1983) Use of the fluorotron master to measure aqueous flow. Invest Ophthalmol Vis Sci [Suppl] 24:88

    Google Scholar 

  • Yablonski ME, Zimmermann TJ, Waltman SR, Becker B (1978) A fluorophotometric study of the effect of topical timolol on aqueous humor dynamics. Exp Eye Res 27:135–142

    Article  PubMed  CAS  Google Scholar 

  • Zabureva TV, Kiseleva ZM (1977) Catecholamine content of the lacrimal fluid of healthy people and glaucoma patients. Ophthalmologica 175:339–344

    Article  Google Scholar 

  • Zadunaisky JA (1966) Active transport of chloride in frog cornea. Am J Physiol 211:506–512

    PubMed  CAS  Google Scholar 

  • Zeller EA, Shoch D, Cooperman SG, Schnipper RI (1967) Enzymology of the refractory media of the eye. IX. On the role of monoamine oxidase in the regulation of aqueous humor dynamics of the rabbit eye. Invest Ophthalmol 6:618–623

    PubMed  CAS  Google Scholar 

  • Zeiler EA, Knepper PA, Shoch D (1975) Differential effects of inhibitors of monoamine oxidase types A and B on the adrenergic system of the rabbit iris. Invest Ophthalmol 14:155–159

    Google Scholar 

  • Zimmerman TJ, Kaufman HE (1977a) Timolol: a beta-adrenergic blocking agent for the treatment of glaucoma. Arch Ophthalmol 95:601–604

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman TJ, Kaufman HE (1977b) Timolol: Dose response and duration of action. Arch Ophthalmol 95:605–609

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sears, M.L. (1984). Autonomic Nervous System: Adrenergic Agonists. In: Sears, M.L. (eds) Pharmacology of the Eye. Handbook of Experimental Pharmacology, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69222-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69222-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69224-6

  • Online ISBN: 978-3-642-69222-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics