Advertisement

Boundary-Value Problems for Media in Uniform Translation

  • Jean Van Bladel
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 15)

Abstract

Ponderable bodies of finite size moving in a pre-existing electromagnetic field are found in a host of situations of technical interest. Space engineers encounter them in radio-communication links involving moving spaceships, and in systems tracking rockets tailed by a column of ionized gases. Nuclear engineers are confronted with superhot, wildly moving thermonuclear plasmas which they seek to probe by means of radio waves. Moving bodies are even more important for electromechanical engineers, who find them in a wide variety of applications ranging from linear motors to electromagnetic brakes or magneto- hydrodynamic generators. Radar engineers are concerned with moving-target detectors such as M.T.I, radars or domestic burglar alarms. On a more theoretical level, circuit analysts studying moving circuits must understand how traditional laws of the type “-dø/dt” or “blv” can be derived from first principles. These (and analogous) problems form the object of the present chapter, which is concerned exclusively with uniform linear translation. More general motions are considered in Chaps.10 and 11.

Keywords

Rest Frame Laboratory Frame Transmitted Wave Scattered Field Incident Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 5.1
    M. von Laue: Die Relativitätstheorie, 1. Bd., Die Spezielle Relativitätstheorie. 7. Aufl. (Vieweg, Braunschweig 1961 ) p. 120Google Scholar
  2. 5.2
    A. Skorupski: Boundary conditions for electromagnetic fields in the case of moving media, Bull. Acad. Polon. Sci. 9, 391–395 (1962)MathSciNetGoogle Scholar
  3. 5.3
    R.C. Costen: Jump conditions for fields that have infinite, integrable singularities at an interface, J. Math. Phys. 22, 1377–1385 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 5.4
    W.G. Dixon: Special Relativity (Cambridge Univ. Press, Cambridge 1978 ) p. 196MATHGoogle Scholar
  5. 5.5
    H. Epheser, T. Schlomka: Flächengröβen und Elektrodynamische Grenzbe- dingungen bei bewegten Körpern, Ann. Phys. 6. Folge, 8, 211–220 (1950)MathSciNetADSMATHGoogle Scholar
  6. 5.6
    T. Schlomka: Die Elektrischen und Magnetischen Flächenwirbel bei bewegten Körpern, Ann. Phys. 6. Folge, 5, 190–196 (1950)MathSciNetGoogle Scholar
  7. 5.7
    A. Sommerfeld: Elektrodynamik (Dietrich1sche Verlag, Wiesbaden 1948 ) p. 284MATHGoogle Scholar
  8. 5.8
    E. Whittaker: A History of the Theories of Aether and Electricity, Vol. 1: The Classical Theories (Nelson, London 1951 ) p. 399Google Scholar
  9. 5.9
    M. Wilson, H.A. Wilson: On the electric effect of rotating a magnetic insulator in a magnetic field, Proc. R. Soc. (London) 89-A, 99–106 (1913)ADSCrossRefGoogle Scholar
  10. 5.10
    A. Einstein, J. Laub: Über die Elektromagnetischen Grundgleichungen für bewegte Körper, Ann. Phys. 26, 532–540 (1908)CrossRefGoogle Scholar
  11. 5.11
    J. Van Bladel: Circuit parameters from Maxwell’s equations, Appl. Sci. Res. 28, 381–397 (1973)Google Scholar
  12. 5.12
    J. Van Bladel: Low-frequency asymptotic techniques, in Modern Topics in Electromagnetics and Antennas, ed. by E.J. Maanders, R. Mittra (Peter Peregrinus, London 1977 ) Chap.1Google Scholar
  13. 5.13
    E.G. Cullwick: Electromagnetic induction in magnetic rod moving with high velocity, Proc. IEE 124, 1105–1110 (1977)Google Scholar
  14. 5.14
    A. Sommerfeld: Mechanics of Deformable Bodies ( Academic, New York 1950 ) p. 130MATHGoogle Scholar
  15. 5.15
    C.T. Tai: On the presentation of Maxwell’s theory, Proc. IEEE 60, 936–945 (1972)MathSciNetCrossRefGoogle Scholar
  16. 5.16
    A. Einstein: Zur Elektrodynamik bewegter Körper, Ann. Phys. (Leipzig) 17, 891–921 (1905)ADSGoogle Scholar
  17. 5.17
    V.I. Granatstein, P. Sprangle, R.K. Parker, J. Pasour, M. Herndon, S.P. Schlesinger, J.L. Softor: Realization of a relativistic mirror: electro magnetic backscattering from the front of a magnetized relativistic electron beam, Phys. Rev. A14, 1194–1201 (1976)ADSCrossRefGoogle Scholar
  18. 5.18
    J.M. Burzzi, H.J. Doucet, B. Etlicher, J.C. Faure, P. Haldenwang, A. Huetz, H. Lamain, C. Rouille, J.C. Cabe, J. Delvaux, J.C. Jouys, C. Peugnet, M. Roche: Experimental evidence of relativistic Doppler frequency conversion on a relativistic electron beam front, IEEE Trans. MTT-25, 559–560 (1977)CrossRefGoogle Scholar
  19. 5.19
    H.J. Price, C.L. Longmire: EMP reflected from a moving conductivity front, Theoretical Note 294, US Air Force Weapons Research Laboratory (1979)Google Scholar
  20. 5.20
    L. Marder: An Introduction to Relativity ( Longman, London 1968 ) p. 106Google Scholar
  21. 5.21
    C. Yeh: Reflection and transmission of electromagnetic waves by a moving dielectric medium, J. Appl. Phys. 36, 3513–3517 (1965)ADSCrossRefGoogle Scholar
  22. 5.22
    T. Shiozawa, K. Hazama, N. Kumagai: Reflection and transmission of electromagnetic waves by a dielectric half-space moving perpendicular to the plane of incidence, J. Appl. Phys. 38, 4459–4461 (1967)ADSCrossRefGoogle Scholar
  23. 5.23
    H. Fujita, T. Yanase, S. Uchida: Effect of a moving boundary on the reflections and the transmission of a plane electromagnetic wave, Electronics Commun. Japan (English transl.) 53-B, No. 10, 87–90 (1970)Google Scholar
  24. 5.24
    M. Saca: Brewster angle in a semi-infinite dielectric moving perpendicularly to the interface, Am. J. Phys. 48, 237–239 (1980)ADSCrossRefGoogle Scholar
  25. 5.25
    C. Yeh: Brewster angle for a dielectric medium moving at a relativistic speed, J. Appl. Phys. 38, 5194–5200 (1967)ADSCrossRefGoogle Scholar
  26. 5.26
    T. Shiozawa, N. Kumagai: Total reflection at the interface between relatively moving media, Proc. IEEE 55, 1243–1244 (1967)CrossRefGoogle Scholar
  27. 5.27
    T. Hosono, T. Hinata, K. Yuda: Reflection of electromagnetic waves at the boundary surface between media moving relative to each other and parallel to both the boundary and plane of incidence, Electronics Commun. Japan (English transl.) 51-B, No. 7, 66–72 (1968)Google Scholar
  28. 5.28
    T. Hosono, T. Hinata, K. Yuda: Reflection of electromagnetic waves at the boundary surface between two media in relative motion perpendicu¬lar to the plane of incidence, Electronics Commun. Japan (English transl.) 52-B, No. 7, 27–35 (1969)Google Scholar
  29. 5.29
    T. Shiozawa, K. Hazama: General solution to the problem of reflection and transmission by a moving dielectric medium, Radio Sci. 3, 569–576 (1968)ADSGoogle Scholar
  30. 5.30
    V.P. Pyati: Reflection and refraction of electromagnetic waves by a moving dielectric medium, J. Appl. Phys. 38, 652–655 (1967)ADSCrossRefGoogle Scholar
  31. 5.31
    J.M. Saca: Snell’s law for light rays in moving isotropic dielectrics, Proc. IEEE 68, 409–410 (1980)CrossRefGoogle Scholar
  32. 5.32
    D. Censor: Scattering of a plane wave at a plane interface separating two moving media, Radio Sci. 4, 1079–1088 (1969)ADSCrossRefGoogle Scholar
  33. 5.33
    M. Ohkubo: The surface impedance of a moving medium, Electronics Commun. Japan (English transl.) 52-B, No. 11, 125–128 (1969)Google Scholar
  34. 5.34
    C. Yeh: Reflection from a dielectric-coated moving mirror, J. Opt. Soc. Am. 57, 657–661 (1967)ADSCrossRefGoogle Scholar
  35. 5.35
    K. Tanaka, K. Hazama: Reflection and transmission of electromagnetic waves by a moving inhomogeneous medium, Radio Sci. 7, 973–978 (1972)ADSCrossRefGoogle Scholar
  36. 5.36
    K. Yasukawa, E. Ogawa, H. Fujioka: Total reflection of Gaussian beam at the interface of moving media, Electronics Commun. Japan (English transl.) 56-B, No. 8, 65–71 (1973)Google Scholar
  37. 5.37
    C. Yeh: Reflection and transmission of electromagnetic waves by a moving plasma medium, J. Appl. Phys. 37, 3079–3082 (1966)ADSCrossRefGoogle Scholar
  38. 5.38
    C. Yeh: Reflection and transmission of electromagnetic waves by a moving plasma medium. II. Parallel polarizations, J. Appl. Phys. 38, 2871–2873 (1967)ADSCrossRefGoogle Scholar
  39. 5.39
    T. Hosono, S. Yamaguchi: Reflection of electromagnetic waves by a multistream plasma slab and some comments on the multilayer approximation method, Elec. Engg. Japan (English transl.) 100, No. 5, 8–13 (1980)Google Scholar
  40. 5.40
    H. Fujioka, F. Nihei, N. Kumagai: Interaction of plane electromagnetic waves with a moving compressible plasma fluid, Can. J. Phys. 47, 375–387 (1969)ADSMATHGoogle Scholar
  41. 5.41
    H. Hazama, K. Tanaka: Effect of a moving semi-infinite isotropic plasma on the radiation from a line source, Electronics Commun. Japan (English transl.) 53-B, No. 11, 74–80 (1970)Google Scholar
  42. 5.42
    J.F. Holmes, A. Ishimaru: Electric dipole radiation in the presence of a moving, dispersive dielectric half-space, Radio Sci. 5, 61–72 (1970)ADSCrossRefGoogle Scholar
  43. 5.43
    M. Lampe, E. Ott, J.H. Walker: Interaction of electromagnetic waves with a moving ionization front, Phys. Fluids 21, 42–54 (1978)ADSCrossRefGoogle Scholar
  44. 5.44
    S.W. Lee, Y.T. Lo: Reflection and transmission of electromagnetic waves by a moving uniaxially anisotropic medium, J. Appl. Phys. 38, 870–875 (1967)ADSCrossRefGoogle Scholar
  45. 5.45
    M. Okhubo: Reflection and transmission of electromagnetic waves by a semi-infinite unaxial plasma moving perpendicular to the plane of incidence, Radio Sci. 11, 573–582 (1976)ADSCrossRefGoogle Scholar
  46. 5.46
    C. Yeh, K.F. Casey: Reflection and transmission of electromagnetic waves by a moving dielectric slab, Phys. Rev. 144, 665–669 (1966)CrossRefGoogle Scholar
  47. 5.47
    C. Yeh: Reflection and transmission of electromagnetic waves by a moving dielectric slab. II. Parallel polarization, Phys. Rev. 167, 875–877 (1968)CrossRefGoogle Scholar
  48. 5.48
    S. Seikai, K. Tanaka, T. Shiozawa: Reflection and transmission of obliquely incident electromagnetic waves by an inhomogeneous plasma slab moving parallel to the magnetostatic field, Radio Sci. 3, 403–408 (1974)ADSCrossRefGoogle Scholar
  49. 5.49
    J. Van Bladel: Electromagnetic Fields (McGraw-Hill, New York 1964 ) pp. 376, 501Google Scholar
  50. 5.50
    D. Censor: Scattering of electromagnetic waves by a cylinder moving along its axis, IEEE Trans. MTT-17, 154–158 (1969)Google Scholar
  51. 5.51
    T. Shiozawa, I. Kawano: Electromagnetic scattering by an infinitely long cylinder moving along its axis, Electronics Commun. Japan (Eng¬lish Transl.) 53-B, 45–51 (1970)Google Scholar
  52. 5.52
    C. Yeh: Scattering obliquely incident microwaves by a moving plasma column, J. Appl. Phys. 40, 5066–5075 (1969)ADSCrossRefGoogle Scholar
  53. 5.53
    T. Shiozawa, S. Seikai: Scattering of electromagnetic waves from an inhomogeneous magnetoplasma column moving in the axial direction, IEEE Trans. AP-20, 455–463 (1972)ADSGoogle Scholar
  54. 5.54
    K. Nakagawa: Scattering of a dipole field by a moving plasma column, IEEE Trans. AP-30, 76–82 (1982)ADSGoogle Scholar
  55. 5.55
    C. Yeh: Diffraction of waves by a conducting cylinder coated with a moving plasma sheath, J. Math. Phys; (N.Y.) 11, 99–104 (1970)ADSMATHCrossRefGoogle Scholar
  56. 5.56
    K.F. Casey, C. Yeh: Radiation from an aperture in a conducting cylin¬der coated with a moving plasma sheath, IEEE Trans. AP-17, 757–762 (1969)ADSGoogle Scholar
  57. 5.57
    T. Kojima: Radiation characteristics of a slotted cylindrical antenna surrounded by a moving magnetoplasma layer, IEEE Trans. AP-22, 449–456 (1974)ADSGoogle Scholar
  58. 5.58
    D. De Zutter, J. Van Bladel: Scattering by cylinders in translational motion, Microwaves, Optics and Acoustics 1, 192–196 (1977)CrossRefGoogle Scholar
  59. 5.59
    S.W. Lee, R. Mittra: Scattering of electromagnetic waves by a moving cylinder in free space, Can. J. Phys. 45, 2599–3007 (1967)Google Scholar
  60. 5.60
    T. Shiozawa, N. Kumagai, T. Takenaka: Electromagnetic scattering by a moving circular cylinder, Electronics Commun. Japan (English transl.) 51-B, No. 4, 75–81 (1968)Google Scholar
  61. 5.61
    D.M. Le Vine: Scattering from a moving cylinder: oblique incidence, Radio Sci. 8, 497–504 (1973)ADSCrossRefGoogle Scholar
  62. 5.62
    D. Censor: Scattering in velocity-dependent systems, Radio Sci. 7, 331–337 (1972)ADSCrossRefGoogle Scholar
  63. 5.63
    J.D. Hunter: Electromagnetic scattering by a transversely moving conducting cylinder of arbitrary cross section, Can. J. Phys. 51, 699–706 (1973)ADSGoogle Scholar
  64. 5.64
    J.D. Hunter: High-frequency diffraction by a moving conducting strips, IEEE Trans. AP-20, 792–794 (1972)ADSCrossRefGoogle Scholar
  65. 5.65
    G.N. Tsandoulas: Low-frequency diffraction by moving conductor strips, J. Opt. Soc. Am. 59, 1357–1360 (1969)ADSCrossRefGoogle Scholar
  66. 5.66
    G.N. Tsandoulas: Electromagnetic diffraction by a moving wedge, radio Sci. 3, 887–892 (1968)ADSGoogle Scholar
  67. 5.67
    J.D. Hunter: Electromagnetic scattering by a moving conducting cylinder of arbitrary cross section, Can. J. Phys. 51, 2389–2394 (1973)ADSGoogle Scholar
  68. 5.68
    D. Censor: Velocity-dependent multiple scattering by two thin cylinders, Radio Sci. 7, 949–954 (1972)ADSCrossRefGoogle Scholar
  69. 5.69
    D. De Zutter: Fourier analysis of the signal scattered by three-dimensional objects in translational motion I, Appl. Sci. Res. 36, 241–256 (1980)MathSciNetMATHCrossRefGoogle Scholar
  70. 5.70
    T. Shiozawa: Electromagnetic scattering by a moving small particle, J. Appl. Phys. 39, 2993–2997 (1968)ADSCrossRefGoogle Scholar
  71. 5.71
    D. De Zutter: Fourier analysis of the signal scattered by three-dimensional objects in translational motion II, Appl. Sci. Res. 36, 257–269 (1980)CrossRefGoogle Scholar
  72. 5.72
    T. Shiozawa: Electromagnetic scattering by a moving small ellipsoid, Electronics Commun. Japan (English transl.) 51-B, 100–107 (1968)Google Scholar
  73. 5.73
    R.C. Restrick: Electromagnetic scattering by a moving conducting sphere, Radio Sci. 3, 1144–1153 (1968)ADSGoogle Scholar
  74. 5.74
    R.H. Ott, G. Hufford: Scattering by an arbitrarily shaped conductor in uniform motion relative to the source of an incident spherical wave, Radio Sci. 3, 857–861 (1968)ADSGoogle Scholar
  75. 5.75
    B.L. Michielsen, G.C. Herman, A.T. de Hoop, D. De Zutter: Threedimensional relativistic scattering of electromagnetic waves by an object in uniform translational motion, J. Math. Phys. (N.Y.) 22, 2716–2722 (1981)ADSCrossRefGoogle Scholar
  76. 5.76
    S. Colak, C. Yeh: Scattering of a focussed beam by moving particles, Appl. Opt. 19, 256–262 (1980)ADSCrossRefGoogle Scholar
  77. 5.77
    T. Shiozawa: Electromagnetic scattering by a small plasma ellipsoid moving through an external stationary magnetic field, Electronics Commun. Japan (English transl.) 52-B, No.1, 91–96 (1969)Google Scholar
  78. 5.78
    K. Hoi ford: If it moves, microwaves will detect it, Electronics and Power 27, 393–396 (1981)Google Scholar
  79. 5.79
    D. Dopheide, F. Durst: High-frequency laser Doppler measurements using multiaxial-mode lasers, Appl. Opt. 20, 1557–1570 (1981)ADSGoogle Scholar
  80. 5.80
    J. Bach Andersen: Doppler spectrum of single automobiles, IEEE Trans. VT-31, 40–51 (1982)Google Scholar
  81. 5.81
    R.C. Costen, D. Adamson: Three-dimensional derivation of the electro- dynamic jump conditions and momentum-energy laws at a moving boundary, Proc. IEEE 53, 1181–1196 (1965)CrossRefGoogle Scholar
  82. 5.82
    D.G. Ashworth, P.A. Davies: The Doppler effect in a reflecting system, Proc. IEEE 64, 280–281 (1976)CrossRefGoogle Scholar
  83. 5.83
    D. Censor: Reflection mechanisms, Doppler effect and special relativity, Proc. IEEE 65, 572 (1977)CrossRefGoogle Scholar
  84. 5.84
    J.R. Collier, C.T. Tai: Guided waves in moving media, IEEE Trans. MTT-13, 441–445 (1965)Google Scholar
  85. 5.85
    W.D. Hershberger: Wave guides and the special theory of relativity, J. Appl. Phys. 16, 465–468 (1945)ADSCrossRefGoogle Scholar
  86. 5.86
    T. Shiozawa: Guided waves in a simple moving medium, Proc. IEEE 54, 1984–1985 (1966)CrossRefGoogle Scholar
  87. 5.87
    P. Daly: Guided waves in moving media, IEEE Trans. MTT-15, 274–275 (1967)Google Scholar
  88. 5.88
    H. Fuji oka, K. Nakagawa, N. Kumagai: Waveguides filled with a moving conducting medium, Electronics Commun. Japan (English transl.) 52-B, 60–65 (1969)Google Scholar
  89. 5.89
    C. Yeh: Propagation along moving dielectric wave guides, J. Opt. Soc. Am. 58, 767–770 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Jean Van Bladel
    • 1
  1. 1.Laboratorium voor Elektromagnetisme en Acustica RijksuniversiteitGentBelgium

Personalised recommendations