Skip to main content

Nonthermal Resonant Effects of 42 GHz Microwaves on the Growth of Yeast Cultures

  • Conference paper
Book cover Coherent Excitations in Biological Systems

Abstract

Repetition of our earlier experiment has confirmed that the growth rate of aqueous yeast cultures is affected by weak microwave radiation in a frequency-selective manner. The extensions of the experimental procedure included a refined frequency stabilization, refined power recording, impedance matching elements, two geometrically different antenna structures and two recording photometers. Laser thermometry was employed to locate any hot spots.

The result is that depending on the frequency (near 42 GHz) both increases and decreases of the growth rate occur, within resonance bands of only 8 MHz full width at half maximum. The effects are reproducible over long periods (years) and with different irradiation geometries. A rather flat intensity dependence is found, e.g. constancy of the effect at 41782 MHz for nearly an order of magnitude variation of applied power.

Microwave-induced heating was measured to amount to 0.6°C for the highest power applied, and to be spatially homogeneous within 0.02°C throughout the stirred liquid culture. This calls for a nonthermal origin of the effect. On the other hand single-quantum effects seem unlikely since the microwave photon energy is much smaller than the thermal energy kT. These findings therefore support theoretical models which suggest the existence of specialized many-quanta receivers, e.g. coherent molecular oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Fröhlich, Int. Quant. Chem. 2, 641 (1968).

    Article  Google Scholar 

  2. H. Fröhlich, Nature 228, 1093 (1970).

    Article  PubMed  Google Scholar 

  3. H. Fröhlich in Advances in Electronics and Electron Physics 53 (eds. L. Marton and C. Marton), pp. 85–152, Academic Press, 1980.

    Google Scholar 

  4. F. Kaiser in Biological Effects and Dosimetry of Nonionizing Radiation (eds. S. Michaelson, M. Grandolfo and A. Rindi) pp. 251–282, Plenum Press, New York, 1982. cf. also contribution in this volume, pp. 149–154.

    Google Scholar 

  5. W. Grundler and F. Keilmann, Z. Naturforsch. 33c, 15 (1978); W. Grundler, F. Keilmann and H. Fröhlich, Phys. lett. 62A, 463 (1977).

    Google Scholar 

  6. L. Genzel, F. Kremer, A. Poglitsch and G. Bechtold, contribution in this volume, pp. 69-85.

    Google Scholar 

  7. S.J. Webb and D.D. Dodds, Nature 218, 374 (1968); S.J. Webb and A.D. Booth, Nature 222, 1199 (1969).

    CAS  Google Scholar 

  8. N.D. Devyatkov, L.A. Sevastyanova, R.L. Vilenskaya, A.Z. Smolyanskaya, V.F. Kondrateva, E.N. Chistyakova, I.F. Shmakova, N.B. Ivanova, A.A. Treskunov, S.E. Manoilov, N.P Zalyubovskaya, R.I. Kiselev, V.L. Gaiduk, Yu.I. Khurgin and V.A. Kudryashova, Sov. Phys.-Usp. 16, 568 (1974).

    Article  Google Scholar 

  9. A.J. Berteaud, M. Dardalhon, N. Rebeyrotte and D. Averbeck, C.R. Acad. Sc. Paris 281, D843 (1975).

    Google Scholar 

  10. S.J. Webb, Phys. Lett. 73A, 145 (1979).

    Article  Google Scholar 

  11. L.A. Sevastyanova, Vestn. Akad. Med. NAUK SSSR 2, pp. 65–88 (1979), (in Russian).

    Google Scholar 

  12. L.A. Sevastyanova, S.I. Potapov, V.G. Adamenko and R.I. Vilenskaya, Biological Sciences, No.6, 1969 (in Russian); S.I. Potapov, L.A. Sevastyanova and R.L. Vilenskaya, Biological Sciences, No. 3, 1974 (in Russian).

    Google Scholar 

  13. E.B. Bazanova, A.K. Bryukhova, R.L. Vilenskaya, E.A. Gelvich, M.B. Golant, N.S. Laudau, V.M. Melnikova, N.P. Mikaelyan, G.M. Okhokhonina, L.A. Sevastyanova, A.Z. Smolyanskaya and N.A. Sycheva, Sov. Phys.-Usp. 16, 569 (1974).

    Article  Google Scholar 

  14. N.V. Abramova, Yu.V. Makeyev, and F.A. Tenn, Elektron. Obrab. Mater. (USSR) 2, 83 (1978), transi, in Electrochem. Ind. Process. Biol., pp. 74–75 (1979).

    Google Scholar 

  15. S.L. Arber, Elektron. Obrab. Mater. (USSR) 3, 59 (1978), transi, in Electrochem. Ind. Process. Biol., pp. 66–75.

    Google Scholar 

  16. N.P. Zalyubovskaya and R.I. Kiselev, Tsitologiya i Genetika 12, 232 (1978).

    CAS  Google Scholar 

  17. M. Dardalhon and D. Averbeck, Proc. IXth Int. Congr. Soc. Française de Radioprotection, Effets Biologiques des Rayonnements Non Ionisants, pp. 279–299, 1978.

    Google Scholar 

  18. M. Dardalhon, A.J. Berteaud and D. Averbeck, Radioprotection 14, 145 (1979).

    Google Scholar 

  19. F. Kremer, C. Koschnitzke, L. Santo, P. Quick and A. Poglitsch, contribution in this volume, pp. 13-24.

    Google Scholar 

  20. G. Nimtz, contribution in this volume, pp. 47–55.

    Google Scholar 

  21. C.F. Blackmann, S.G. Benane, C.M. Weil and J.S. Ali, Am. New York Acad. Sei. 247 PP-352–366 (1975),

    Google Scholar 

  22. P. Tuengler, F. Keilmann and L. Genzel, Z. Naturforsch. 34c, 60 (1979).

    CAS  Google Scholar 

  23. D.L. Jaggard and J.L. Lords, Proc. IEEE 68, 114 (1980).

    Article  Google Scholar 

  24. L.M. Partlow, L.G. Bush, L.J. Stensaas, D.W. Hill, A. Riazi, O.P. Gandhi, P.L. Inversen and M.J. Hagman, Biolelectromagnetics 2, pp. 123–159 (1981).

    Article  CAS  Google Scholar 

  25. G. Larson and L. Karlander, Report TRITA-TET-8201, Royal Institute of Technology, S-10044 Stockholm (1982).

    Google Scholar 

  26. F. Keilmann, D. Böhme and L. Santo, Appl. Envir. Microbiol. 40, 458 (1980).

    CAS  Google Scholar 

  27. F. Keilmann, Collective Phenomena 169 (1981).

    Google Scholar 

  28. W. Grundler, Collective Phenomena 3, 181 (1981).

    Google Scholar 

  29. W. Grundler, F. Keilmann, V. Putterlik and D. Strube, Br.J. Cancer 45, Suppl. V, 206 (1982).

    Google Scholar 

  30. F. Keilmann in Biological Effects and Dosimetry of Nonionizing Radiation (eds. S. Michaelson, M. Grandolfo and A. Rindi), pp. 283–298, Plenum Press, New York, 1982.

    Google Scholar 

  31. W. Grundler in Biological Effects and Dosimetry of Nonionizing Radiation (eds. S. Michaelson, M. Grandolfo and A. Rindi), pp. 299–318, Plenum Press, New York, 1982.

    Google Scholar 

  32. W. Grundler, F. Keilmann, D. Strube and I. Zimmermann, unpublished.

    Google Scholar 

  33. Nonthermal Effects of Millimeter Wave Irradiation, (ed. N.D. Devyatkov), Academ. Sei. USSR, Inst. Radiotech. Electrotech. Moscow, 1981 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grundler, W., Keilmann, F., Putterlik, V., Santo, L., Strube, D., Zimmermann, I. (1983). Nonthermal Resonant Effects of 42 GHz Microwaves on the Growth of Yeast Cultures. In: Fröhlich, H., Kremer, F. (eds) Coherent Excitations in Biological Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69186-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69186-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69188-1

  • Online ISBN: 978-3-642-69186-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics