Skip to main content

Active Metabolites in Toxicology: The Role of Cytochrome P-448 and Flavoprotein Oxidases

  • Conference paper
Disease, Metabolism and Reproduction in the Toxic Response to Drugs and Other Chemicals

Part of the book series: Archives of Toxicology ((TOXICOLOGY,volume 7))

Abstract

The activation of toxic chemicals and carcinogens into reactive intermediates involves oxygenation in hindered positions of the molecule, by cytochrome P-448 (LM4), flavoprotein oxidoreductases, or transoxygenation during prostaglandin biosynthesis. Cytochrome P-450 (LM2) does not oxygenate in hindered positions and therefore generally detoxicates carcinogens and toxic chemicals. Cytochrome P-448 has a different active site from cytochrome P-450, which enables it to oxygenate substrates in conformationally-hindered positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson B, Nordenskjöld M, Rahimtula A, Moldeus P (1982) Prostaglandin synthetase-catalysed activation of phenacetin metabolites to genotoxic products. Mol Pharmacol 22: 479–485

    PubMed  CAS  Google Scholar 

  • Bidelman K, Mannering GJ (1970) Induction of drug metabolism. V. Independent formation of cytochrome P-450 and P1450 in rats treated with phenobarbital and 3-methylcholanthrene simulatenously. Mol Pharmacol 6: 697–701

    Google Scholar 

  • Burke MD, Mayer RT (1975) Inherent specificities of purified cytochromes P-450 and P-448 towards biphenyl hydroxylation and ethoxyresorufin deethylation. Drug Metab Dispos 3: 245–253

    PubMed  CAS  Google Scholar 

  • Cohen G, Cederbaum AI (1979) Chemical evidence of production of hydroxyl radicals during microsomal electron transport. Science 204: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Delaforge M, Ioannides C, Parke DV (1982) Selective inhibition of the safrole-induced mixed-function oxidase activities by 9-hydroxyellipticine. Chem Biol Interactions 42:279–289

    Article  CAS  Google Scholar 

  • Dus KM (1982) Insights into the active site of the cytochrome P-450 haemoprotein family — a unifying concept based on a structural considerations. Xenobiotica 12: 745–772

    Article  PubMed  CAS  Google Scholar 

  • Frederick CB, Mays JB, Ziegler DM, Guengerich FP, Kadlubar FF (1982) Cytochrome P-450 and flavin-containing monooxygenase-catalysed formation of the carcinogen N-hydroxy-2-amino-fluorene and its covalent binding to nuclear DNA. Cancer Res 42: 2671–2677

    PubMed  CAS  Google Scholar 

  • Hara E, Kawajiri K, Gotoh O, Tagashira Y (1981) Immunochemical study on the contributions of two molecular species of microsomal cytochrome P-450 to the metabolism of 2-acetylamino-fluorene by rat liver microsomes. Cancer Res 41: 253–257

    PubMed  CAS  Google Scholar 

  • Hashimoto C, Imai Y (1976) Purification of a substrate complex of cytochrome P-450 from liver microsomes of 3-methylcholanthrene-treated rabbits. Biochem Biophys Res Commun 68:821–827

    Article  PubMed  CAS  Google Scholar 

  • Igarashi S, Yonekawa H, Kawajiri K, Watanabe J, Kimura T, Kodama M, Nagata C, Tagashira Y (1982) Participation of the microsomal electron transport system in mutagenic activation of 4-dimethylaminoazobenzene, 4-methylaminoazobenzene, and their 3′-methyl derivatives. Biochem Biophys Res Commun 106: 164–169

    Article  PubMed  CAS  Google Scholar 

  • Ingelman-Sunberg M, Habjörk AL (1982) On the significance of the cytochrome P-450-dependent hydroxyl radical-mediated oxygenation mechanism. Xenobiotica 11: 673–686

    Article  Google Scholar 

  • Ioannides C, Parke DV (1975) Mechanism of induction of hepatic microsomal drug metabolizing enzymes by a series of barbiturates. J Pharm Pharmacol 27: 739–746

    Article  PubMed  CAS  Google Scholar 

  • Ioannides C, Parkinson C, Parke DV (1981a) Activation of benzo(a)pyrene and 2-acetamidoflu- orene to mutagens by microsomal preparations from different animal species: Role of cytochrome P-450 and P-448. Xenobiotica 11: 701–708

    Article  PubMed  CAS  Google Scholar 

  • Ioannides C, Delaforge M, Parke DV (1981b) Safrole: Its metabolism, carcinogenicity and interactions with cytochrome P-450. Food Cosmet Toxicol 19: 657–666

    Article  PubMed  CAS  Google Scholar 

  • Ioannides C, Steele CM, Parke DV (1983) Species variation in the metabolic activation of paracetamol to toxic intermediates: Role of cytochromes P-450 and P-448. Toxicol Lett 16:55–61

    Article  PubMed  CAS  Google Scholar 

  • Jefcoate CR, Gaylor J (1969) Ligand interactions with hemoprotein P-450. II Influence of phenobarbital and methylcholanthrene induction processes on P-450 spectra. Biochemistry 8: 3464–3472

    Article  PubMed  CAS  Google Scholar 

  • Johnson EF, Levitt DS, Muller-Eberhard U, Thorgeirsson SS (1980) Catalysis of divergent pathways of 2-acetylaminofluorene metabolism by multiple forms of cytochrome P-450. Cancer Res 40: 4456–4459

    PubMed  CAS  Google Scholar 

  • Lai C-S, Grover TA, Piette LH (1979) Hydroxyl radical production in a purified NADPH-cy- tochrome c (P-450) reductase system. Arch Biochem Biophys 193: 373–378

    Article  PubMed  CAS  Google Scholar 

  • Levin W, Wood AW, Lu AYH, Ryan D, West S, Conney AH, Thakker DR, Yagi H, Jerina DM (1977) Role of purified cytochrome P-448 and epoxide hydrase in the activation and detoxication of benzo(a)pyrene. In: Jerina DM (ed) ACS symposium, Drug metabolism concepts. American Chemical Society, Washinton, DC, pp 99–125

    Chapter  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagents. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • Lu AYH, West SB (1980) Multiplicity of mammalian microsomal cytochromes P-450. Pharmacol Rev 31: 277–295

    Google Scholar 

  • Lu AYH, Kuntzman R, West S, Jacobson M, Conney AH (1972) Reconstituted liver microsomal enzyme that hydroxylates drugs, other foreign compounds and endogenous substrates. II Roles of the cytochrome P-450 and P-448 fractions in drug and steroid hydroxylations. J Biol Chem 247:1727–1734

    PubMed  CAS  Google Scholar 

  • Nebert DW, Negishi M (1982) Multiple forms of cytochrome P-450 and the importance of molecular biology and evolution. Biochem Pharmacol 31: 2311–2317

    Article  PubMed  CAS  Google Scholar 

  • Nebert DW, Goujon GM, Gielen JE (1972) Aryl hydrocarbon hydroxylase induction by polycyclic hydrocarbons: simple autosomal dominant trait in the mouse. Nature (New Biol) 236:107–110

    CAS  Google Scholar 

  • Nebert DW, Bigelow SW, Okey AB, Yahagi T, Mori Y, Nagao M, Sugimura T (1979) Pyrolysis products from amino acids and protein: Highest mutagenicity requires cytochrome P1450. Proc Natl Acad Sci USA 76: 5929–5933

    Article  PubMed  CAS  Google Scholar 

  • Nelson SD (1982) Metabolic activation and drug toxicity. J Med Chem 25: 753–765

    Article  PubMed  CAS  Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide pigment of liver microsomes. I. Evidence for its haemoprotein nature. J Biol Chem 239: 2370–2378

    PubMed  CAS  Google Scholar 

  • Parke DV (1983) Mechanism of chemical toxicity — A unifying hypothesis. Regul Toxicol Pharmacol 2:267–286

    Article  Google Scholar 

  • Parke DV, Ioannides C (1982) Role of mixed-function oxidases in the formation of biological reactive intermediates. Adv Exp Med Biol 136A: 23–38

    CAS  Google Scholar 

  • Phillipson CE, Ioannides C, Delaforge M, Parke DV (1982) Studies on the substrate-binding sites of liver microsomal cytochrome P-448. Biochem J 207: 51–56

    PubMed  CAS  Google Scholar 

  • Poland AP, Glover E, Kende AS (1976) Stereospecific, high-affinity binding of 2,3,7,8-tetra- chlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is the receptor for the induction of aryl hydrocarbon hydroxylase. J Biol Chem 251: 4936–4946

    PubMed  CAS  Google Scholar 

  • Reiter R, Wendel A (1982) Chemically-induced glutathione depletion and lipid peroxidation. Chem Biol Interact 40:365–374

    Article  PubMed  CAS  Google Scholar 

  • Schenkmann JB (1970) Studies on the nature of the type I and type II spectral changes in liver microsomes. Biochemistry 9:2081–2091

    Article  Google Scholar 

  • Statham CN, Boyd MR (1982) Effects of phenobarbital and 3-methylcholanthrene on the in vivo distribution, metabolism and covalent binding of 4-ipomeanol in the rat; implications for target organ toxicity. Biochem Pharmacol 31: 3973–3977

    Article  PubMed  CAS  Google Scholar 

  • Steele CM, Masson HA, Battershill JM, Gibson GG, Ioannides C (1983) Metabolic activation of paracetamol by highly purified forms of cytochrome P-450. Res Commun Chem Pathol Pharmacol 40:109–119

    PubMed  CAS  Google Scholar 

  • Thorgeirsson SS, Felton JS, Nebert DW (1975) Genetic differences in the aromatic hydrocarbon-inducible N-hydroxylation of 2-acetylaminofiuorene and acetaminophen-produced hepa-totoxicity in mice. Mol Pharmacol 11: 159–165

    PubMed  CAS  Google Scholar 

  • Trush MA, Mimnaugh EG, Gram TE (1982) Activation of pharmacologic agents to radical intermediates. Implications for the role of free radicals in drug action and toxicity. Biochem Pharmacol 31: 3335–3346

    Article  PubMed  CAS  Google Scholar 

  • Tukey RH, Hannah RR, Negishi M, Nebert DW, Howard JE (1982) The Ah locus: Correlation of intranuclear appearance of inducer-receptor complex with induction of cytochrome Pr450 mRNA. Cell 31: 275–2854

    Article  PubMed  CAS  Google Scholar 

  • Yang CS, Strickhart FS, Kicha LP (1978) Analysis of the aryl hydrocarbon hydroxylase assay. Biochem Pharmacol 27: 2321–2326

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Parke, D.V., Ioannides, C. (1984). Active Metabolites in Toxicology: The Role of Cytochrome P-448 and Flavoprotein Oxidases. In: Chambers, P.L., Preziosi, P., Chambers, C.M. (eds) Disease, Metabolism and Reproduction in the Toxic Response to Drugs and Other Chemicals. Archives of Toxicology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69132-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69132-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12452-8

  • Online ISBN: 978-3-642-69132-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics