Advertisement

Neurochemical and Model Membrane Studies in Demyelinating Diseases

  • B. Maggio
  • F. A. Cumar
  • G. A. Roth
  • C. G. Monferrán
  • G. D. Fidelio
Part of the Acta Neuropathologica Supplementum book series (NEUROPATHOLOGIC, volume 9)

Abstract

One of the main roles of myelin in the central nervous system seems to be related to maintaining a low ionic conductivity around axons (1) and a modification of its composition, intermodular interactions and concomitant permeability changes can be particularly perturbing and lead to several disorders that involve “demyelination”. This word simply means “myelin loss” in general and occurs to a limited extent in some processes and very dramatically in others, the alteration has been well documented from the morphological point of view and with regard to the ultrastructural sequences of myelin damage (2–4). However, from the point of view of membrane biophysics the concept of demyelination becomes much less defined since the bulk of experimental evidence in the biomembrane field has shown that membrane structures completely different in their chemical composition, metabolism or permeability, are nevertheless indistinguishable from their ultrastructural morphology.

Keywords

Experimental Autoimmune Encephalomyelitis Myelin Basic Protein Experimental Allergic Encephalomyelitis Myelin Membrane Lipid Alteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richtie JM (1979) A pharmacological approach to the structure of sodium channels in myelinated axons, Ann Rev Neurosci 2: 341–362.CrossRefGoogle Scholar
  2. 2.
    Lampert PW, Kies MW (1967) Mechanism of demyelination in allergic encephalomyelitis of guinea pigs. An electron microscopic study. Exp Neurol 18; 210–223.PubMedCrossRefGoogle Scholar
  3. 3.
    Ballin RHM, Thomas PK (1968) Electron microscope observation on demyelination and remyelination in experimental allergic neuritis. Part 1. Demyelination. J Neurol Sci 8: 1–18.CrossRefGoogle Scholar
  4. 4.
    Dal Canto MC, Wisniewski HM, Johnson AB, Brostoff SW, Raine CS (1975) Vesicular disruption of myelin in autoimmune demyelination. J Neurol Sci 24: 313–319.CrossRefGoogle Scholar
  5. 5.
    Maggio B, Cumar FA, Maccioni HJ (1972) Lipid content in brain and spinal cord during experimental allergic encephalomyelitis in rats. J Neurochem 19: 1031–1037.PubMedCrossRefGoogle Scholar
  6. 6.
    Maggio B, Cumar FA (1974) Antigen-dependent alterations in the lipid composition of the CNS in guinea pigs with experimental allergic encephalomyelitis. Brain Res 77: 297–307.PubMedCrossRefGoogle Scholar
  7. 7.
    Maggio B, Cumar FA (1975) Experimental allergic encephalomyelitis; Dissociation of neurological symptoms from lipid alterations in brain. Nature 253: 364–365.PubMedCrossRefGoogle Scholar
  8. 8.
    Roth GA, Monferran CG, Maggio B, Cumar FA (1982) Central nervous system lipid alterations in rats with experimental allergic encephalomyelitis and its suppression by immunosuppressive drugs. Life Sci 30: 859–866.PubMedCrossRefGoogle Scholar
  9. 9.
    Eto Y, Suzuki K (1972) Cholesterol esters in developing rat brain: concentration and fatty acid composition. J Neurochem 19: 109–115.CrossRefGoogle Scholar
  10. 10.
    Eto Y, Suzuki K (1971) Fatty acid composition of cholesterol esters in brains of patients with Schilder’s disease, GM1-gangliosidosis and Tay-Sach’s disease, and its possible relationship to the β-position fatty acids of lecithin. J Neurochem 18: 1007–1016.PubMedCrossRefGoogle Scholar
  11. 11.
    Ramsey RB, Davison AN (1974) Steryl esters and their relationship to normal and diseased human central nervous system. J Lip Res 15: 249–255.Google Scholar
  12. 12.
    Maggio B, Maccioni HJ, Cumar FA (1973) Arylsulphatase A (E.C.3.1.6.1.) activity in rat central nervous system during experimental allergic encephalomyelitis. J Neurochem 20: 503–510.PubMedCrossRefGoogle Scholar
  13. 13.
    Vasan NS, Bachhawat BK (1971) Enzymtc studies on sulphatide metabolism in different stages of experimental allergic encephalomyelitis, J Neurochem 18: 1853–1859.PubMedCrossRefGoogle Scholar
  14. 14.
    Cuzner ML, Davison AN (1968) The lipid composition of rat brain myelin and subcellular fractions during development. Biochem J. l06: 29–34.Google Scholar
  15. 15.
    Crang AJ, Rumsby MG (1978) Molecular organization in central nerve myelin, In: Palo J (ed) Myelination and Demyelination, Adv Exptl Med Biol J 100: 235–248.Google Scholar
  16. 16.
    Demel RA, London Y, Geurts van Kessel WSM, Vossemberg FGA, van Deenen LLM (1973) The specific interaction of myelin basic protein with lipids at the air-water interface. Biochim Biophys Acta 311: 507–519.PubMedCrossRefGoogle Scholar
  17. 17.
    London Y, Demel RA, Geurts van Kessel WSM, Zahler P, van Deenen LLM (1974) The interaction of the Folch-Lees protein with lipids at the air-water interface. Biochim Biophys Acta 332: 69–84.CrossRefGoogle Scholar
  18. 18.
    Fidelio GD, Maggio B, Cumar FA (1982) Interaction of soluble and membrane proteins with monolayers of glycosphingolipids. Biochem J 203: 717–725.PubMedGoogle Scholar
  19. 19.
    Chapman D (1975) Phase transitions and fluidity characteristics of lipids and cell membranes. Quart Rev Biophys 8: 185–235.CrossRefGoogle Scholar
  20. 20.
    Matus A, de Petris S, Raff MC (1973) Mobility of concanavalin A receptors in myelin and synaptic membranes. Nature New Biol 244: 278–280.PubMedCrossRefGoogle Scholar
  21. 21.
    Roth GA, Maggio B, Monferrán CG, Cumar FA (1978) Experimental allergic encephalomyelitis. Identification of the myelin component responsible for the appearance of brain esterified cholesterol. FEBS Lett 86: 29–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Hashim GA, Wood DD, Moscarello MA (1980) Myelin lipophilin-induced demyelinating disease of the central nervous system. Neurochemical Research 5: 1137–1145.PubMedCrossRefGoogle Scholar
  23. 23.
    Chelmicka-Szorc E, Arnason BGW (1975) Suppression of experimental allergic encephalomyelitis in guinea pigs with poly-L-lysine. Clin Exp Immunol 22: 539–545.PubMedGoogle Scholar
  24. 24.
    Cumar FA, Maggio B, Roth GA (1977) Selective lipid alterations during experimental allergic encephalomyelitis. An interpretation of the changes. In: Bazán NG, Brenner RR, Giusto NM (eds) Function and Biosynthesis of lipids. Adv Exptl Med Biol 83: 505–511.Google Scholar
  25. 25.
    Maggio B, Cumar FA, Caputto R (1981) Molecular behaviour of glycosphingo-lipids in interfaces. Possible participation in some properties of nerve membranes. Biochim Biophys Acta 650: 69–87.PubMedGoogle Scholar
  26. 26.
    Maggio B, Mestrallet MG, Cumar FA, Caputto R (1977) Glucose release from liposomes containing gangliosides or other membrane lipids induced by biogenic amines and myelin basic protein, Biochim Biophys Res Comm 77: 1265–1272.CrossRefGoogle Scholar
  27. 27.
    Roth GA (1980) Encefalomielitis alérgica experimental, Alteración del contenido lipídico de sistema nervioso central de ratas e inestabilización de membranas inducidas por la apoproteína del proteolípido de Folch, PhD Thesis. Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.Google Scholar
  28. 28.
    Lucy JA (1978) Mechanisms of chemically induced cell fusion. In: Poste G, Nicolson GL (eds) Membrane fusion. Elsevier/North Holland Biomedical Press pp. 267–304.Google Scholar
  29. 29.
    Saida T, Saida K, Silverberg DH, Brown MJ (1978) Transfer of demyelination by intraneural injection of experimental allergic neuritis serum. Nature 272: 639–641.PubMedCrossRefGoogle Scholar
  30. 30.
    Schlaepfer WW (1977) Vesicular disruption of myelin simulated by exposure of nerve to calcium ionophore. Nature 265: 734–736.PubMedCrossRefGoogle Scholar
  31. 31.
    Hall S, Gregson NA (1971) The in vivo and ultrastructural effects of lysophosphatidylcholine into myelinated peripheral nerve fibers of the adult mouse. J Cell Sci 9: 769–789.PubMedGoogle Scholar
  32. 32.
    Monferrán CG, Maggio B, Roth GA, Cumar FA, Caputto R (1979), Membrane instability induced by purified myelin components. Its possible relevance to experimental allergic encephalomyelitis, Biochim Biophys Acta 553: 417–423.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith R (1977) Non-covalent cross-linking of lipid bilayers by myelin basic protein. A possible role in myelin formation. Biochim Biophys Acta 470: 170–184.PubMedCrossRefGoogle Scholar
  34. 34.
    Blow AM, Botham GM, Lucy JA (1979) Calcium ions and cell fusion. Effects of chemical fusogens on the permeability of erythrocytes to calcium and other ions. Biochem J 182: 555–563.PubMedGoogle Scholar
  35. 35.
    Ting-Beall HP, Lees MB, Robertson JD (1979) Interactions of Folch-Lees proteolipid apoprotein with planar lipid bilayers, J Membrane Biol 51: 33–46.CrossRefGoogle Scholar
  36. 36.
    Cumar FA, Maggio B, Caputto R (1980) Neurotransmitter movements in nerve endings. Influence of substances that modify the interfacial potential. Biochim Biophys Acta 597: 174–182.PubMedCrossRefGoogle Scholar
  37. 37.
    Honegger CG, Bucher W, von Hahn HP (1978) Studies on the action of myelin basic protein in rat brain. In:Palo J (ed) Myeltnation and Demyelination. Adv Exptl Med Biol 100:147–157.Google Scholar
  38. 38.
    Hope MJ, Cullis PR (1981) The role of nonbilayer lipid structures in the fusion of human erythrocytes induced by lipid fusogens, Biochim Biophys Acta 640: 82–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Boni LT, Stewart TP, Alderfer JL, Hui SW (1981) Lipid-polyethylene glycol interactions: II. Formation of defects in bilayers, J Membrane Biol 62: 71–77.CrossRefGoogle Scholar
  40. 40.
    Lee AG (1977) Lipid phase transitions and phase diagrams. II. Mixtures involving lipids. Biochim Biophys Acta 472: 285–344.PubMedGoogle Scholar
  41. 41.
    Rasmussen H (1975) Ions as second messengers. In: Weissman G, Clairborne R (eds) Cell membranes, biochemistry, cell biology and pathology, HP Publishing Co. pp. 203–212.Google Scholar
  42. 42.
    Kinsky SC (1972) Antibody-complement interaction with lipid model membranes. Biochim Biophys Acta 265: 1–23.PubMedGoogle Scholar
  43. 43.
    Henkart P, Blumenthal R (1975) Interaction of lymphocytes with lipid bilayer membranes: A model for lymphocyte-mediated lysis of tarqet cells, Proc Nat Acad Sci 72: 2789–2793.PubMedCrossRefGoogle Scholar
  44. 44.
    Bretscher MS, Raff MC (1975) Mammalian plasma membranes. Nature 258: 43–49.PubMedCrossRefGoogle Scholar
  45. 45.
    Nicolson GL (1976) Trans-membrane control of the receptors on normal and tumor cells. II.Surface changes associated with transformation, and malignancy. Biochim Biophys Acta 458: 1–72.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • B. Maggio
    • 1
  • F. A. Cumar
    • 1
  • G. A. Roth
    • 1
  • C. G. Monferrán
    • 1
  • G. D. Fidelio
    • 1
  1. 1.Departamento de Química Biológica, Facultad de Ciencias QuímicasCiudad UniversitariaCórdobaArgentina

Personalised recommendations