Pulsating Flow in Distensible Models of Vascular Branches

  • D. Liepsch
  • S. Moravec
  • R. Zimmer

Summary

Deposits and blockages often occur at bends and bifurcations of human arteries. In addition to biochemical factors, haemodynamics also plays a major role in arteriosclerosis. The haemodynamic factors — rate of flow, pressure, flow behaviour, shear stress on the walls and in the whirl zones — are therefore of particular significance to the formation mechanisms.

Of these, the shear stress on the edge of the whirl zones and flow-deprived areas are of special interest [1,6,7,8,9,10], The duration for which the particles remain in these zones is also a decisive factor [2]. High and low shear stresses are believed to be responsible for the adhesion and deposition of thrombocytes [4,11]. The present study demonstrates velocity measurements in rigid and elastic models under pulsating flow conditions.

Keywords

Sugar Vortex Amide Rubber Polyacrylamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geigy Documenta, Thrombose in neuem Licht. Firmenschrift 1978Google Scholar
  2. 2.
    Karino T, Kwong HM, Goldsmith HL (1979) Particle flow behaviour in models of branching vessels: F. vortices in 90°-T-junctions. Biorheology 16: 231–248PubMedGoogle Scholar
  3. 3.
    Liepsch D, Moravec St, Zimmer R (1981) Einfluß der Hämodynamik auf Gefäßveränderungen. Biomed Technik 26: 115–122CrossRefGoogle Scholar
  4. 4.
    Liepsch D, Moravec St, Zimmer R (1978) Untersuchung der Strömungsvorgänge in Modellen des menschlichen Blutgefäßsystems. In: DFG-Jahresbericht 1977/78. Nimbach, MünchenGoogle Scholar
  5. 5.
    Moravec St, Liepsch D (1981) Geschwindigkeitsmessungen an einer dreidimensionalen Verzweigung mit viskoelastischen Fluiden als Medium. Biomed Technik 26: 119CrossRefGoogle Scholar
  6. 6.
    Naumann A (1975) Strömungen in natürlichen und künstlichen Organen und Gefäßen. Klin Wschr 53: 1007–1019PubMedCrossRefGoogle Scholar
  7. 7.
    Nerem RM, Rooz Elkana (1981) Coronary fluid dynamics. Proceedings of the Fourth International Congress of Biorheology, TokyoGoogle Scholar
  8. 8.
    Niimi H, Yamakawa T, Hanai S, Minamiyama M (1981) Fine structure of blood flow near a wall in relation to atherogenesis. Recent Advances in Cardiovascular Disease, vol 2 [Suppl] 89–91Google Scholar
  9. 9.
    Schmid-Schönbein H (1981) Fluidity of blood in microvessels: Consequences of red cell behaviour and vasomotor activity. Proceedings of the Fourth International Congress of Biorheology, TokyoGoogle Scholar
  10. 10.
    Talukder N, Reuter B (1981) Messung von Wandeinflüssen auf die Strömung makromolekularer Flüssigkeiten mit Hilfe des Laser-Differential-Mikroanemometers. Biomed Technik 26: 120CrossRefGoogle Scholar
  11. 11.
    Wurzinger LJ (1979) Hydrodynamisch induzierte Plättchenablagerungen an Glasmodellen verzweigter Gefäßabschnitte und Speziesunterschiede im Plättchenaggre-gationsverhalten von Mensch, Rind, Schwein, Schaf, Hund, Kaninchen und Truthahn. Diss RWTH AachenGoogle Scholar
  12. 12.
    Zimmer R, Liepsch D, Moravec St (1980) Geschwindigkeitsmessung mit einem Laser-Doppler-Anemometer in einer starren und elastischen 35°-Verzweigung. Biomed Technik 25: 368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • D. Liepsch
  • S. Moravec
  • R. Zimmer

There are no affiliations available

Personalised recommendations