Skip to main content

Wirkungsmechanismus der Herzglykoside

  • Chapter
Book cover Therapie mit Herzglykosiden
  • 21 Accesses

Zusammenfassung

Der genaue Mechanismus der positiv inotropen Herzglykosidwirkung ist trotz intensiver Forschung in seinen Einzelheiten noch weitgehend unaufgeklärt. Auf der Suche nach den spezifischen Angriffspunkten der kardioaktiven Glykoside wurden Einflüsse vermutet bzw. nachgewiesen auf die Polymerisation des Aktins der Herzmuskelzelle [34], auf die physikochemischen Eigenschaften des Myosins [52], auf die Myosin-ATPase-Aktivität [35], auf die kontraktilen Eigenschaften von Aktomyosinpräparationen [70] oder auf das sarkoplasmatisch-retikuläre System der Herzmuskelzelle [14, 27]. Diese Untersuchungen waren aber entweder mit extrem hohen Herzglykosidkonzentrationen (> 10−5 mol/l) durchgeführt worden, oder sie ließen sich an entsprechenden Präparationen mit höherer Reinheit nicht reproduzieren (Übersichten s. [9, 41, 62, 69]). Tatsächlich sind im Laufe der Bemühungen, den primären Wirkort der Herzglykoside zu sichern, wohl alle subzellulären Systeme schon einmal mit diesen in geringsten Dosen wirksamen Pharmaka letztlich erfolglos in Verbindung gebracht worden. Als einziger, sicher reproduzierbarer primärer Angriffspunkt der kardioaktiven Steroide an der Zelle hat sich dabei das (Na+ + K+)-ATPase-System der Zellmembran erwiesen [1, 56]. Dieses von Skou [63] nachgewiesene, membrangebundene Enzymsystem stellt die biochemische Basis für den aktiven, gekoppelten transmembranären Na+ /K+ -Transport der Zellmembran dar [64].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Akera T (1977) Membrane adenosinetriphosphatase: A digitalis receptor? Science 198: 569–574

    Article  PubMed  CAS  Google Scholar 

  2. Akera T, Brody TM (1978) The role of Na+, K+-ATPase in the inotropic action of digitalis. Pharmacol Rev 29: 187–220

    Google Scholar 

  3. Akera T, Baskin SI, Tobin T, Brody TM (1973) Ouabain: Temporal relationship between the inotropic effect and the in vitro binding to, and dissociation from, (Na+ + K+)-activated ATPase. Naunyn-Schmiedebergs Arch Pharmacol 277: 151–162

    Article  PubMed  CAS  Google Scholar 

  4. Allen JC, Schwartz A (1970) Effects of potassium, temperature and time on ouabain interaction with the cardiac Na+, K+-ATPase: Further evidence supporting an allosteric site. J Mol Cell Cardiol 1: 39–45

    Google Scholar 

  5. Allen JC, Entman ML, Schwartz A (1975) The nature of the transport adenosine triphosphatasedigitalis complex. VIII. The relationship between in vivo-formed (3H)-ouabain-Na+, K+-adenosine triphosphatase complex and ouabain-induced positive inotropism. J Pharmacol Exp Ther 192: 105–112

    PubMed  CAS  Google Scholar 

  6. Bentfeld M, Lüllmann H, Peters T, Proppe D (1977) Interdependence of ion transport and the action of ouabain in heart muscle. Br J Pharmacol 61: 19–27

    PubMed  CAS  Google Scholar 

  7. Besch HR, Allen JD, Glick G, Schwartz A (1970) Correlation between the inotropic action of ouabain and its effects on subcellular enzyme systems from canine myocardium. J Pharmacol Exp Ther 171: 1–13

    PubMed  CAS  Google Scholar 

  8. Blaustein MP (1974) The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol 70: 33–82

    Article  PubMed  CAS  Google Scholar 

  9. Brody TM, Akera T (1977) Relations among Na+, K+-ATPase activity, sodium pump activity, transmembrane sodium movement, and cardiac contractility. Fed Proc 36: 2219–2224

    PubMed  CAS  Google Scholar 

  10. Caldwell PC, Keynes RD (1959) The effect of ouabain on the efflux of sodium from a squid giant axon. J Physiol (Lond) 148: 8P - 9 P

    Google Scholar 

  11. Dahl JL, Hokin LE (1974) The sodium-potassium adenosine-triphosphatase. Ann Rev Biochem 43: 327–356

    Article  PubMed  CAS  Google Scholar 

  12. Daut J, Rüdel R (1981) Cardiac glycoside binding to the Na/K-ATPase in the intact myocardial cell: Electrophysiological measurement of chemical kinetics. J Mol Cell Cardiol 13: 777–782

    Google Scholar 

  13. De Pover A, Godfraind T (1979) Interaction of ouabain with (Na+ + K+)-ATPase from human and from Guinea-pig Heart. Biochem Pharmacol 28 (1979) 3051–3056

    PubMed  Google Scholar 

  14. Dutta S, Goswami S, Lindower JO, Marks BH (1968) Subcellular distribution of digoxin-H3 in isolated Guinea-pig and rat hearts. J Pharmacol Exp Ther 159: 324–334

    PubMed  CAS  Google Scholar 

  15. Erdmann E (1977) Cell membrane receptors for cardiac glycosides in the heart. Basic Res Cardiol 72: 315–325

    Article  PubMed  CAS  Google Scholar 

  16. Erdmann E (1978) Quantitative Aspekte der spezifischen Bindung von Herzglykosiden an Membranrezeptoren. Habilitationsschrift, Universität München

    Google Scholar 

  17. Erdmann E (1981) Influence of cardiac glycosides on their receptor. In: Greeff K (ed) Cardiac Glycosides. Springer, Berlin Heidelberg New York (Handbook of Experimental Pharmacology, vol 564 pp 337–380 )

    Chapter  Google Scholar 

  18. Erdmann E, Schoner W (1973) Ouabain-receptor interactions in (Na+ + K+)-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants. Biochim Biophys Acta 307: 386–398

    Google Scholar 

  19. Erdmann E, Schoner W (1973) Ouabain-receptor interactions in (Na+ + K+)-ATPase preparations. II. Effect of cations and nucleotides on rate constants and dissociation constants. Biochim Biophys Acta 330: 302–315

    Google Scholar 

  20. Erdmann E, Schoner W (1973) Ouabain-receptor interactions in (Na + + K+)-ATPase preparations. III. On the stability of the ouabain receptor against physical treatment, hydrolysis and SH reagents. Biochim Biophys Acta 330: 316–324

    Google Scholar 

  21. Erdmann E, Presek P, Swozil R (1976) Über den Einfluß von Kalium auf die Bindung von Strophanthin an menschliche Herzmuskelzellmembranen. Min Wochenschr 54: 383–387

    Article  CAS  Google Scholar 

  22. Erdmann E, Philipp G, Scholz H (1980) Cardiac glycoside receptor, (Na+ + K+)-ATPase activity and force of contraction in rat heart. Biochem Pharmacol 29: 3219–3229

    Article  PubMed  CAS  Google Scholar 

  23. Erdmann E, Philipp G, Scholz H (1981) Evidence for two receptors for cardiac glycosides in the heart. In: Godfraind T, Meyer P (eds) Cell membrane in function and dysfunction of vascular tissue. Elsevier North Holland, Amsterdam New York Oxford, pp 76–83

    Google Scholar 

  24. Flasch H, Heinz N (1978) Correlation between inhibition of (Na+, K+)-membrane-ATPase and positive inotropic activity of cardenolides in isolated papillary muscles of Guinea pig. Naunyn Schmiedebergs Arch Pharmacol 304: 37–44

    Article  PubMed  CAS  Google Scholar 

  25. Forbush B, Hoffmann JF (1979) Evidence that ouabain binds to the same large polypeptide chain of dimeric Na, K-ATPase that is phosphorylated from Pi. Biochemistry 18: 2308–2315

    Google Scholar 

  26. Fozzard HA, Smith JR (1965) Observations on the localization of tritiated digoxin in myocardial cells by autoradiography and ultramicroscopy. Am Heart J 69: 245–252

    Article  PubMed  CAS  Google Scholar 

  27. Fricke U (1978) Myocardial activity of inhibitors of the Na+ + K+ -ATPase: Differences in the mode of action and subcellular distribution pattern. Naunyn Schmiedebergs Arch Pharmacol 303: 197–204

    PubMed  CAS  Google Scholar 

  28. Ghysel-Burton J, Godfraind T (1979) Stimulation and inhibition of the sodium pump by cardioactive steroids in relation to their binding sites and their inotropic effect on Guinea pig isolated atria. Br J Pharmacol 66: 175–184

    PubMed  CAS  Google Scholar 

  29. Glynn IM, Karlish SJD (1975) The sodium pump. Annu Rev Physiol 37: 13–55

    Article  PubMed  CAS  Google Scholar 

  30. Godfraind T (1975) Cardiac glycoside receptors in the heart. Biochem Pharmacol 24: 823–827

    Article  PubMed  CAS  Google Scholar 

  31. Godfraind T, Ghysel-Burton J (1977) Binding sites related to ouabain-induced stimulation or inhibition of the sodium pump. Nature 265: 165–166

    Article  PubMed  CAS  Google Scholar 

  32. Hoffmann JF (1966) The red cell membrane and the transport of sodium and potassium. Am J Med 41: 666–680

    Article  Google Scholar 

  33. Hokin LE (1974) Purification and properties of the (sodium + potassium)-activated adenosinetriphosphatase and reconstitution of sodium transport. Ann NY Acad Sci 242: 12–23

    Article  PubMed  CAS  Google Scholar 

  34. Horvath I, Kiraly C, Suerb J (1949) Action of cardiac glycosides on the polymerisation of actin. Nature 165: 792

    Article  Google Scholar 

  35. Jakobsen AL (1968) Effect of ouabain on the ATPase of cardiac myosin B at high ionic strength. Circ Res 22: 625–632

    Google Scholar 

  36. Jorgensen PL (1975) Isolation and characterization of the components of the sodium pump. Q Rev Biophys 7: 239–274

    Article  Google Scholar 

  37. Langer GA (1972) Effects of digitalis on myocardial ionic exchange. Circulation 46: 180–187

    PubMed  CAS  Google Scholar 

  38. Langer GA (1977) Relationship between myocardial contractility and the effect of digitalis on ionic exchange. Fed Proc 36: 2–231–2234

    Google Scholar 

  39. LaufPK (1975) Antigen-antibody reactions and cation transport in biomembranes: Immunophysiological aspects. Biochem Biophys Acta 415: 173–229

    Google Scholar 

  40. Lee CO, Kang DH, Sokol JH, Lee KS (1980) Relation between intracellular Na ion activity and tension of sheep cardiac Purkinje fibers exposed to dihydro-ouabain. Biophys J 29: 315–330

    Article  PubMed  CAS  Google Scholar 

  41. Lee KS, Klaus W (1971) The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev 23: 193–261

    PubMed  CAS  Google Scholar 

  42. Lindenmayer GE, Schwartz A, Thompson HK (1974) A kinetic description for sodium and potassium effects on (Na+ + K+)-adenosine triphosphatase • A model for a two-non-equivalent site potassium activation and an analysis of multiequivalent site models for sodium activation. J Physiol (Lond) 236: 1–28

    CAS  Google Scholar 

  43. Ullmann H, Peters T (1974) Cardiac glycosides and contractility. Adv Cardiol 12: 174–182

    Google Scholar 

  44. Ullmann H, Peters T, Ziegler A (1979) Kinetic events determining the effect of cardiac glycosides. TIPS (1979) pp 12–106

    Google Scholar 

  45. Matsui H, Schwartz A (1968) Mechanism of cardiac glycoside inhibition of the (Na ++K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta 151: 655–663

    PubMed  CAS  Google Scholar 

  46. Mayahara H, Fujimoto K, Ando T, Ogawa K (1980) A new one-step method for the cytochemical localization of ouabain-sensitive, potassium-dependent p-nitrophenylphosphatase activity. Histochemistry 67: 125–138

    Article  PubMed  CAS  Google Scholar 

  47. McCall D (1949) Cation exchange and glycoside binding in cultured rat heart cells. Am J Physiol 236: C87 - C95

    Google Scholar 

  48. Michael LH, Schwartz A, Wallick ET (1979) Nature of the transport adenosine triphosphatasedigitalis complex: XIV. Inotropy and cardiac glycoside interaction with Na+, K+-ATPase of isolated cat papillary muscle. Mol Pharmacol 16: 135–146

    PubMed  CAS  Google Scholar 

  49. Murthy RV, Kidwai AM, Daniel EE (1974) Dissociation of contractile effect binding and inhibition of Na+-K+-adenosine triphosphatase by cardiac glycosides in rabbit myometrium. J Pharmacol Exp Ther 188: 575–581

    PubMed  CAS  Google Scholar 

  50. Noble D (1980) Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovasc Res 14: 495–514

    Article  PubMed  CAS  Google Scholar 

  51. Okita GT (1975) Dissociation of the positive inotropic effects from the cardiotoxicity effects of digitalis. Proc West Pharmacol Soc 18: 14–19

    PubMed  CAS  Google Scholar 

  52. Olson RE, Ellenbogen E, Iyengar R (1961) Cardiac myosin and congestive heart failure in the dog. Circulation 24: 475–482

    Google Scholar 

  53. Perrone JP, Blostein R (1973) Asymmetric interaction of inside-out and rightside-out erythrocyte membrane vesicles with ouabain. Biochim Biophys Acta 291: 680–689

    Article  PubMed  CAS  Google Scholar 

  54. Pitts BJR, Schwartz A (1975) Improved purification and partial characterization of (Na+, K+)ATPase from cardiac muscle. Biochim Biophys Acta 401: 184–195

    Article  PubMed  CAS  Google Scholar 

  55. Repke K, Portius HJ (1963) Über die Identität der Ionenpumpen-ATPase in der Zellmembran des Herzmuskels mit einem Digitalis-Rezeptorenzym. Experientia 19: 1–7

    Article  Google Scholar 

  56. Repke K, Est M, Portius HJ (1965) Über die Ursache der Speciesunterschiede in der Digitalisempfindlichkeit. Biochem Pharmacol 14: 1785–1802

    Article  PubMed  CAS  Google Scholar 

  57. Reuter H, Scholz H (1977) A study of the ion selectivity and the kinetic properties of the calcium-dependent slow inward current in mammalian cardiac muscle. J Physiol 264: 49–62

    PubMed  CAS  Google Scholar 

  58. Rossi B, Vuilleumier P, Gache C, Balerna M, Lazdunski M (1980) Affinity labeling of the digitalis receptor with p-nitrophenyltriazene-ouabain, a highly specific alkylating agent. J Biol Chem 255: 9936–9941

    PubMed  CAS  Google Scholar 

  59. Ruoho A, Kyte J (1974) Photoaffinity labeling of the ouabain-binding site on (Na+ + K+)- adenosinetriphosphatase. Proc Natl Acad Sci 71: 2352–2356

    Article  PubMed  CAS  Google Scholar 

  60. Schatzmann HJ (1953) Herzglykoside als Hemmstoffe für den aktiven Kalium-und Natrium-transport durch die Erythrocytenmembran. Hely Physiol Acta 11: 346–354

    CAS  Google Scholar 

  61. Schwartz A (1976) Is the cell membrane Na+, K+-ATPase enzyme system the pharmacological receptor for digitalis? Circ Res 39: 2–7

    CAS  Google Scholar 

  62. Schwartz A, Lindenmayer G, Allen JC (1975) The sodium-potassium adenosine triphosphatase: Pharmacological, physiological, and biochemical aspects. Pharmacol Rev 27: 3–134

    Google Scholar 

  63. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23: 349–401

    Article  Google Scholar 

  64. Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membranes. Physiol Rev 45: 596–617

    PubMed  CAS  Google Scholar 

  65. Skou JC, Nerby JG (1979) Na, K-ATPase, structure and kinetics. Academic Press, London New York San Franscisco

    Google Scholar 

  66. Smith TW, Haber E (1973) Digitalis. Clinical value of the radioimmunoassay of the digitals glycosides. Pharmacol Rev 25: 219–228

    Google Scholar 

  67. Smith TW, Wagner H, Strosberg AD, Young M (1974) Characterization of solubilized myocardial (Na+ + K+)-ATPase. Ann NY Acad Sci 242: 53–68

    Article  PubMed  CAS  Google Scholar 

  68. Titus EO (1975) Characterization of pharmacological receptors. Naunyn Schmiedebergs Arch Pharmacol 288: 269–281

    Article  PubMed  CAS  Google Scholar 

  69. Wallick ET, Lane LK, Schwartz A (1979) Biochemical mechanism of the sodium pump. Annu Rev Physiol 41: 397–412

    Article  PubMed  CAS  Google Scholar 

  70. Waser PG, Volkart 0 (1954) Wirkung von Herzglykosiden auf Aktomyosin. HeIv Physiol Acta 12: 12–22

    CAS  Google Scholar 

  71. Whittman R, Chipperfield AR (1973) Ouabain binding to the sodium pump in plasma membranes isolated from ox brain. Biochim Biophys Acta 307: 563–577

    Article  Google Scholar 

  72. Yamamoto S, Akera T, Brody TM (1979) Sodium influx rate and ouabain-sensitive rubidium uptake in isolated Guinea Pig atria. Biochim Biophys Acta 55: 270–284

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Erdmann, E. (1983). Wirkungsmechanismus der Herzglykoside. In: Erdmann, E. (eds) Therapie mit Herzglykosiden. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69046-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69046-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69047-1

  • Online ISBN: 978-3-642-69046-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics