Skip to main content

Methods for Inferring Phylogenies: A Statistical View

  • Chapter

Part of the NATO ASI Series book series (ASIG,volume 1)

Abstract

I thought that I should start off by delivering some unpopular opinions. Although they have always seemed to me to be self-evident to the point of tedium, I find that these are wildly controversial, and that only a small minority of systematists agrees with them.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-69024-2_35
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-69024-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Camin, J. H., and R. R. Sokal. 1965. A method for deducing branching sequences in phylogeny. Evolution 19: 311–326.

    CrossRef  Google Scholar 

  • Cavalli-Sforza, L. L., and A. W. F. Edwards. 1967. Phylogenetic analysis: models and estimation procedures. Evolution 22: 550–570 (also in Amer. J. Human Genetics 19: 233–257).

    CrossRef  Google Scholar 

  • Cavalli-Sforza, L. L., and A. Piazza. 1975. Analysis of evolution: rates, independence and treeness. Theoretical Population Biology 8: 127–165.

    CrossRef  PubMed  CAS  Google Scholar 

  • Cavender, J. 1978. Taxonomy with confidence. Math. Biosciences 40: 271 ? 280 (erratum, 44: 308 1979).

    CrossRef  Google Scholar 

  • Cavender, J. 1981. Tests of phylogenetic hypotheses under generalized models. Math. Biosciences 54: 217–229.

    CrossRef  Google Scholar 

  • Eck, R. V., and M. O. Dayhoff. 1966. Atlas of Protein Sequence and Structure 1966. National Biomedical Research Foundation, Silver Spring, Maryland.

    Google Scholar 

  • Edwards, A. W. F., and L. L. Cavalli-Sforza. 1963. The reconstruction of evolution. Ann. Human Genetics 27: 105 (also Heredity 18: 553).

    Google Scholar 

  • Edwards, A. W. F., and L. L. Cavalli-Sforza. 1964. Reconstruction of evolutionary trees. pp. 67–76 in Phenetic and Phylogenetic Classification, ed. V. H. Heywood and J. McNeill. Publ. No. 6, Systematics Association, London.

    Google Scholar 

  • Estabrook, G. F., C. S. Johnson, Jr., and F. R. McMorris. 1976a. An algebraic analysis of cladistic characters. Discrete Mathematics 16: 141–147.

    CrossRef  Google Scholar 

  • Estabrook, G. F., C. S. Johnson, and F. R. McMorris. 1976b. A mathematical foundation for the analysis of cladistic character compatibility. Math. Biosciences 29: 181–187.

    CrossRef  Google Scholar 

  • Estabrook, G. F., and F. R. McMorris. 1980. When is one estimate of evolutionary relationships a refinement of another ? J. Mathematical Biology 4: 195–200.

    CrossRef  Google Scholar 

  • Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology 19: 83–92.

    CrossRef  Google Scholar 

  • Farris, J. S., A. G. Kluge, and M. J. Eckhardt. 1970. A numerical approach to phylogenetic systematics. Systematic Zoology 19: 172–189.

    CrossRef  Google Scholar 

  • Farris, J. S. 1977. Phylogenetic analysis under Dollo’s Law. Systematic Zoology 26: 77–88.

    CrossRef  Google Scholar 

  • Farris, J. S. 1978. Inferring phylogenetic trees from chromosome inversion data. Systematic Zoology 27: 275–284.

    CrossRef  Google Scholar 

  • Felsenstein, J. 1973a. Maximum-likelihood estimation of evolutionary trees from continuous characters. Amer. J. Human Genetics 25: 471–492.

    CAS  Google Scholar 

  • Felsenstein, J. 1973b. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology 22: 240–249.

    CrossRef  Google Scholar 

  • Felsenstein, J. 1978a. The number of evolutionary trees. Systematic Zoology 27: 27–33.

    CrossRef  Google Scholar 

  • Felsenstein, J. 1978b. Cases in which parsimony and compatibility methods will be positively misleading. Systematic Zoology 27: 401–410.

    CrossRef  Google Scholar 

  • Felsenstein, J. 1979. Alternative methods of phylogenetic inference and their interrelationship. Systematic Zoology 28: 49–62.

    CrossRef  Google Scholar 

  • Felsenstein, J. 1981a. A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biological J. Linnean Society 16: 183–196.

    CrossRef  Google Scholar 

  • Felsenstein, J. 1981b. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35: 1229–1242.

    CrossRef  Google Scholar 

  • Felsenstein, J. 1981c. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Molecular Evolution 17: 368–376.

    CrossRef  CAS  Google Scholar 

  • Felsenstein, J. 1982a. How can we infer geography and history from gene frequencies? J. Theoretical Biology 96: 9–20.

    CrossRef  CAS  Google Scholar 

  • Felsenstein, J. 1982a. How can we infer geography and history from gene frequencies? J. Theoretical Biology 96: 9–20.

    CrossRef  CAS  Google Scholar 

  • Felsenstein, J. 1982a. How can we infer geography and history from gene frequencies? J. Theoretical Biology 96: 9–20.

    CrossRef  CAS  Google Scholar 

  • Ferris, S. D., S. L. Portnoy, and G. S. Whitt. 1979. The roles of speciation and divergence time in the loss of duplicate gene expression. Theoretical Population Biology 15: 114–139.

    CrossRef  Google Scholar 

  • Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specified tree topology. Systematic Zoology 20: 406–416.

    CrossRef  Google Scholar 

  • Garey, M. R., and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP- Completeness. W. H. Freeman, San Francisco.

    Google Scholar 

  • Gomberg, D. 1966. “Bayesian” post-diction in an evolution process. University of Pavia, unpublished manuscript.

    Google Scholar 

  • Kashyap, R. L., and S. Subas. 1974. Statistical estimation of parameters in a phylogenetic tree using a dynamic model of the substitutional process. J. Theoretical Biology 91: 261–272.

    Google Scholar 

  • Kluge, A. J., and J. S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Systematic Zoology 18: 1–32.

    CrossRef  Google Scholar 

  • Le Quesne, W. J. 1969. A method of selection of characters in numerical taxonomy. Systematic Zoology 18: 201–205.

    CrossRef  Google Scholar 

  • Le Quesne, W. J. 1974. The uniquely evolved character concept and its cladistic application. Systematic Zoology 23: 513–517.

    CrossRef  Google Scholar 

  • McMorris, F. R. 1975. Compatibility criteria for cladistic and qualitative taxonomic characters. pp. 399–415 in Proceedings of the Eighth International Conference on Numerical Taxonomy, ed. G. F. Estabrook. W. H. Freeman, San Francisco.

    Google Scholar 

  • Neyman, J. 1971. Molecular studies of evolution: a source of novel statistical problems. pp. 1–27 in Statistical Decision Theory and Related Topics, ed. S. S. Gupta and J. Yackel. Academic Press, New York.

    Google Scholar 

  • Rao, C. R. 1965. Linear Statistical Inference and Its Applications. John Wiley, New York.

    Google Scholar 

  • Thompson, E. A. 1975. Human Evolutionary Trees. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Felsenstein, J. (1983). Methods for Inferring Phylogenies: A Statistical View. In: Felsenstein, J. (eds) Numerical Taxonomy. NATO ASI Series, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69024-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69024-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69026-6

  • Online ISBN: 978-3-642-69024-2

  • eBook Packages: Springer Book Archive