Methods for Inferring Phylogenies: A Statistical View

  • Joseph Felsenstein
Part of the NATO ASI Series book series (volume 1)

Abstract

I thought that I should start off by delivering some unpopular opinions. Although they have always seemed to me to be self-evident to the point of tedium, I find that these are wildly controversial, and that only a small minority of systematists agrees with them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Camin, J. H., and R. R. Sokal. 1965. A method for deducing branching sequences in phylogeny. Evolution 19: 311–326.CrossRefGoogle Scholar
  2. Cavalli-Sforza, L. L., and A. W. F. Edwards. 1967. Phylogenetic analysis: models and estimation procedures. Evolution 22: 550–570 (also in Amer. J. Human Genetics 19: 233–257).CrossRefGoogle Scholar
  3. Cavalli-Sforza, L. L., and A. Piazza. 1975. Analysis of evolution: rates, independence and treeness. Theoretical Population Biology 8: 127–165.PubMedCrossRefGoogle Scholar
  4. Cavender, J. 1978. Taxonomy with confidence. Math. Biosciences 40: 271 ? 280 (erratum, 44: 308 1979).CrossRefGoogle Scholar
  5. Cavender, J. 1981. Tests of phylogenetic hypotheses under generalized models. Math. Biosciences 54: 217–229.CrossRefGoogle Scholar
  6. Eck, R. V., and M. O. Dayhoff. 1966. Atlas of Protein Sequence and Structure 1966. National Biomedical Research Foundation, Silver Spring, Maryland.Google Scholar
  7. Edwards, A. W. F., and L. L. Cavalli-Sforza. 1963. The reconstruction of evolution. Ann. Human Genetics 27: 105 (also Heredity 18: 553).Google Scholar
  8. Edwards, A. W. F., and L. L. Cavalli-Sforza. 1964. Reconstruction of evolutionary trees. pp. 67–76 in Phenetic and Phylogenetic Classification, ed. V. H. Heywood and J. McNeill. Publ. No. 6, Systematics Association, London.Google Scholar
  9. Estabrook, G. F., C. S. Johnson, Jr., and F. R. McMorris. 1976a. An algebraic analysis of cladistic characters. Discrete Mathematics 16: 141–147.CrossRefGoogle Scholar
  10. Estabrook, G. F., C. S. Johnson, and F. R. McMorris. 1976b. A mathematical foundation for the analysis of cladistic character compatibility. Math. Biosciences 29: 181–187.CrossRefGoogle Scholar
  11. Estabrook, G. F., and F. R. McMorris. 1980. When is one estimate of evolutionary relationships a refinement of another ? J. Mathematical Biology 4: 195–200.CrossRefGoogle Scholar
  12. Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology 19: 83–92.CrossRefGoogle Scholar
  13. Farris, J. S., A. G. Kluge, and M. J. Eckhardt. 1970. A numerical approach to phylogenetic systematics. Systematic Zoology 19: 172–189.CrossRefGoogle Scholar
  14. Farris, J. S. 1977. Phylogenetic analysis under Dollo’s Law. Systematic Zoology 26: 77–88.CrossRefGoogle Scholar
  15. Farris, J. S. 1978. Inferring phylogenetic trees from chromosome inversion data. Systematic Zoology 27: 275–284.CrossRefGoogle Scholar
  16. Felsenstein, J. 1973a. Maximum-likelihood estimation of evolutionary trees from continuous characters. Amer. J. Human Genetics 25: 471–492.Google Scholar
  17. Felsenstein, J. 1973b. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology 22: 240–249.CrossRefGoogle Scholar
  18. Felsenstein, J. 1978a. The number of evolutionary trees. Systematic Zoology 27: 27–33.CrossRefGoogle Scholar
  19. Felsenstein, J. 1978b. Cases in which parsimony and compatibility methods will be positively misleading. Systematic Zoology 27: 401–410.CrossRefGoogle Scholar
  20. Felsenstein, J. 1979. Alternative methods of phylogenetic inference and their interrelationship. Systematic Zoology 28: 49–62.CrossRefGoogle Scholar
  21. Felsenstein, J. 1981a. A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biological J. Linnean Society 16: 183–196.CrossRefGoogle Scholar
  22. Felsenstein, J. 1981b. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35: 1229–1242.CrossRefGoogle Scholar
  23. Felsenstein, J. 1981c. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Molecular Evolution 17: 368–376.CrossRefGoogle Scholar
  24. Felsenstein, J. 1982a. How can we infer geography and history from gene frequencies? J. Theoretical Biology 96: 9–20.CrossRefGoogle Scholar
  25. Felsenstein, J. 1982a. How can we infer geography and history from gene frequencies? J. Theoretical Biology 96: 9–20.CrossRefGoogle Scholar
  26. Felsenstein, J. 1982a. How can we infer geography and history from gene frequencies? J. Theoretical Biology 96: 9–20.CrossRefGoogle Scholar
  27. Ferris, S. D., S. L. Portnoy, and G. S. Whitt. 1979. The roles of speciation and divergence time in the loss of duplicate gene expression. Theoretical Population Biology 15: 114–139.CrossRefGoogle Scholar
  28. Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specified tree topology. Systematic Zoology 20: 406–416.CrossRefGoogle Scholar
  29. Garey, M. R., and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP- Completeness. W. H. Freeman, San Francisco.Google Scholar
  30. Gomberg, D. 1966. “Bayesian” post-diction in an evolution process. University of Pavia, unpublished manuscript.Google Scholar
  31. Kashyap, R. L., and S. Subas. 1974. Statistical estimation of parameters in a phylogenetic tree using a dynamic model of the substitutional process. J. Theoretical Biology 91: 261–272.Google Scholar
  32. Kluge, A. J., and J. S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Systematic Zoology 18: 1–32.CrossRefGoogle Scholar
  33. Le Quesne, W. J. 1969. A method of selection of characters in numerical taxonomy. Systematic Zoology 18: 201–205.CrossRefGoogle Scholar
  34. Le Quesne, W. J. 1974. The uniquely evolved character concept and its cladistic application. Systematic Zoology 23: 513–517.CrossRefGoogle Scholar
  35. McMorris, F. R. 1975. Compatibility criteria for cladistic and qualitative taxonomic characters. pp. 399–415 in Proceedings of the Eighth International Conference on Numerical Taxonomy, ed. G. F. Estabrook. W. H. Freeman, San Francisco.Google Scholar
  36. Neyman, J. 1971. Molecular studies of evolution: a source of novel statistical problems. pp. 1–27 in Statistical Decision Theory and Related Topics, ed. S. S. Gupta and J. Yackel. Academic Press, New York.Google Scholar
  37. Rao, C. R. 1965. Linear Statistical Inference and Its Applications. John Wiley, New York.Google Scholar
  38. Thompson, E. A. 1975. Human Evolutionary Trees. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Joseph Felsenstein
    • 1
  1. 1.Department of GeneticsUniversity of WashingtonSeattleUSA

Personalised recommendations