Skip to main content

Causal Histogenesis (Pauwels, Kummer) and Related Biomechanical Discoveries as a Basis for the Cementless Fixation of Hip Endoprostheses

  • Conference paper
The Cementless Fixation of Hip Endoprostheses

Abstract

The structural makeup of an organ is a product of functional adaptation. An implant that is inserted to replace a skeletal defect must conform to the prevailing scheme. In this way disruptive effects can be avoided, and, because the implant is surrounded by living and thus reactive tissue, proprioceptive stimuli can be preserved. These are necessary as control signals, especially for the cell and its dependent functions, because metabolic feedback is crucial in ensuring that tissues develop and are maintained in accordance with the functions they perform. The “master program” is the genetic code. The functional stimuli associated with static and dynamic loads provide a kind of trigger impulse of varying magnitude and quality which initiates processes, either directly or indirectly, that carry out the adaptation to loads within genetic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bassett AL (1966) Electromechanical factors regulating bone architecture. In: Fleisch H, Blackwood HJJ, Owen M (eds) Calcified tissues 1965, Proc. Eur. Symp. 3rd, 1965. Springer, Berlin Heidelberg New York, pp 78–89

    Google Scholar 

  • Bassett AL (1968) Biologic significance of piezoelectricity. Calcif Tissue Res 1:252–272

    Article  PubMed  CAS  Google Scholar 

  • Becker RO, Bassett CAL, Bachmann CH (1963) In: Bone biodynamics. Frost H (ed) Bioelectrical factors controlling bone structure. Little, Brown, Boston, pp 209–231

    Google Scholar 

  • Becker RO, Murray DG (1980) The electrical control system regulating fracture healing in amphibiens. Clin Orthop & Rel Res 73, pp 169–198.

    Google Scholar 

  • Fung YC (1981) Biomechanics mechanichal properties of living tissue, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bourne H (1971/72/76) “The Biochemistry and Physiology of Bone”, Bd 1–4, Academic Press, New York

    Google Scholar 

  • Culmann K (1866/1873) Die graphische Statik, Bd 1, 1. Aufl (1866); 2. Aufl (1873). Zurich

    Google Scholar 

  • Engelhardt A, Flemming M, Scholten R etal. (1972) Kraftflußberechnungen in Knochenstrukturen und Prothesen. Bundesminist. fur Bildung und Wiss., Forschungsber.

    Google Scholar 

  • Engelhardt A, Grell H, Scharbach H et al. (1977) Reasons for loosenings of hip endoprostheses and their consequences for new hip implant designs. S Afr Mech Eng 28: 6

    Google Scholar 

  • Fung YC (1981) “Biomechanics Mechanical Properties of Living Tissue”, Springer Berlin Heidelberg New York

    Google Scholar 

  • Huggler AH, Schreiber A (1968) Die Alloarthroplastik des Hüftgelenkes mit Femurschaftund Totalendoprothesen, 2. Aufl. Thieme, Stuttgart

    Google Scholar 

  • Huggler AH, Schreiber A (1978) Alloarthroplastik des Hüftgelenkes, 2. überarb. und erweiterte Auflage. Georg Thieme Verlag Stuttgart

    Google Scholar 

  • Knese KH (1979) Handbuch der mikroskopischen Anatomie des Menschen, Bd 2, Teil 5. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kummer B (1978) Mechanische Beanspruchung und funktionelle Anpassung des Knochens. Verh Anat Ges 72

    Google Scholar 

  • Meyer Hv (1867) Die Architektur der Spongiosa. Reichert, Du Bois-Reymond’s Arch 615

    Google Scholar 

  • Meyer Hv (1882) Statik und Mechanik des menschlichen Knochengerüstes. Cotta, Stuttgart

    Google Scholar 

  • Pauwels F (1948) Die Bedeutung der Bauprinzipien des Stützund Bewegungsapparates für die Beanspruchung der Röhrenknochen. Z Anat 129–166

    Google Scholar 

  • Pauwels F (1954) Eine neue Theorie über die kausale Histogenese der Stützsubstanzen. Vortrag 52, Vers Anat Ges, Münster

    Google Scholar 

  • Perren SM, Huggler A, Russenberger M etal (1969a) A method of measuring the change in compression applied to living cortical bone. Acta Orthop Scand [Suppl] 125:7

    CAS  Google Scholar 

  • Perren SM, Huggler A, Russenberger et al. (1969 b) A dynamic compression plate. Acta Orthop Scand [Suppl] 125:29

    Google Scholar 

  • Perren SM, Ganz R, Rüter A (1972) Mechanical induction of bone resorption. 4th Int. Osteological Symp. Prag (contribution)

    Google Scholar 

  • Rittmann WW, Perren SM (1974) Corticale Knochenheilung nach Osteosynthese und Infektion. Biomechanik und Biologic Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Roux W (1895) Der züchtende Kampf der Teile oder die „Teilauslese“ im Organismus, zugleich eine Theorie der funktionellen Anpassung. Ges Abh Bd I und II, Leipzig

    Google Scholar 

  • Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Engelhardt, A. (1984). Causal Histogenesis (Pauwels, Kummer) and Related Biomechanical Discoveries as a Basis for the Cementless Fixation of Hip Endoprostheses. In: Morscher, E. (eds) The Cementless Fixation of Hip Endoprostheses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69006-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69006-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69008-2

  • Online ISBN: 978-3-642-69006-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics