Advertisement

The Uncemented Thrust-Plate Hip Prosthesis

  • A. H. Huggler
  • H. A. C. Jacob
Conference paper

Abstract

One of the main problems in the implantation of conventional total hip prostheses is the exposure of the host bone to unphysiologic loads. Ideally, an endoprosthesis should be designed in such a way that it distributes loads to the bone in a normal fashion. The physiologic stress pattern in the proximal femur is reflected in the geometry of the trabeculae, which align with prevailing compressive and tensile stresses.

Keywords

Femoral Neck Cancellous Bone Proximal Femur Acetabular Component Drill Guide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dietschi C (1978) Problematik des künstlichen Hüftgelenkes: Experimentelle Untersuchungen über die Biomechanik des Hüftgelenkes und Langzeitergebnisse nach Hüfttotalendoprothesen. Habilitationsschrift Dez. 1976. Gentner, StuttgartGoogle Scholar
  2. Ducheyne P, Heymans L, Martens M, Aemoudt E, de Meester P, Mulier JC (1977) The mechanical behaviour of intracondylar cancellous bone of the femur at different loading rates. J Biomech 10 (11/ 12): 747–762PubMedCrossRefGoogle Scholar
  3. Jacob HAC, Huggler AH (1978) Experimentelle Spannungsanalysen im menschlichen Oberschenkelknochen-Modell mit und ohne Prothese. Forschungsheft, Technische Rundschau, Sulzer, S 73–83Google Scholar
  4. Jacob HAC, Huggler AH (1980) An investigation into biomechanical causes of prosthesis stem loosening within the proximal end of the human femur. J Biomech 13:159–173PubMedCrossRefGoogle Scholar
  5. Jacob HAC, Huggler AH, Dietschi C, Schreiber A (1976) The mechanical function of subchondral bone as experimentally determined on the acetabulum of the human pelvis. Biomechan 9:625–627CrossRefGoogle Scholar
  6. Kölbel R, Bergmann G, Rohlmann A, Rauschenbach N (1977) Dynamic implant for application of cyclic loads to bone in vivo. Artif Organs 1/2:125Google Scholar
  7. McKee GK (1967) Developments in total hip joint replacement. Symposium on lubrication and wear in living and artificial human joints. Institution of Mechanical Engineers, London. Proc 1966/67, vol 181, Part 3 J, Paper 4, 1–5Google Scholar
  8. McKee GK (1970) Development of total prosthetic replacement of the hip. Clin Orthop 72:85–103PubMedGoogle Scholar
  9. Ritter G, Grünert A (1973) Experimentelle Untersuchungen zu den mechanischen Eigenschaften des Knochens im Hinblick auf die Druckosteosynthesen. Arch Orthop Unfallchir 75:302–316PubMedCrossRefGoogle Scholar
  10. Scholten R (1976) Über die Berechnung der mechanischen Beanspruchung in Knochenstrukturen mittels fur den Flugzeugbau entwickeltes Rechenverfahren. Med Orthop Techn 6:130–137Google Scholar
  11. Wiles P (1958) The Surgery of the osteoarthritic hip. Br J Surg 45:488–497PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • A. H. Huggler
  • H. A. C. Jacob

There are no affiliations available

Personalised recommendations