Interpretation of Ga and Ge Content in Sphalerite from the Triassic Pb-Zn Deposits of the Alps

  • P. Möller
  • P. Dulski
  • H.-J. Schneider
Part of the Special Publication No. 3 of the Society for Geology Applied to Mineral Deposits book series (MINERAL DEPOS., volume 3)


Ga/Ge and Ga/Zn atomic ratios are interpreted as the chemical result of hydrolysis reactions of silicate rocks. Under simplifying assumptions diagrams of Ga/Ge and Ga/Zn vs. pH have been calculated for various temperatures. These graphs allow to read best-fitting sets of parameters (T, pH, ΣS) for each ore subprovince in areas like the Calcareous Alps. For Gorno/Italy, Rauschberg/Germany and Bleiberg-Kreuth/Austria sets of parameters for the last equilibration of the ore fluid have been derived. These data indicate that hydrothermal solutions entered the depositional environment.


Hydrolysis Reaction Silicate Rock Mississippi Valley Type Spark Source Mass Spectroscopy International Standard Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Ga/Ge and Ga/Zn-Atomverhältnisse werden als das Ergebnis der Hydrolyse von Silikaten gedeutet. Unter vereinfachenden Annahmen werden Ga/Ge vs. pH- und Ga/Zn vs. pH-Diagramme für verschiedene Temperaturen berechnet. Mit ihrer Hilfe lassen sich wahrscheinlichste Sätze von Parametern (T, pH, ΣS) aus den analytisch ermittelten Ga/Ge and Ga/Zn-Verhältnissen in Sphaleriten verschiedener Regionen der Kalkalpen ableiten. Die Ergebnisse für Gorno (Italien), Rauschberg (Deutschland) und Bleiberg-Kreuth (Österreich) zeigen auf, daß die Erzlösungen das letzte Mal bei T > 200°C (Gorno, Rauschberg) und T > 50°C (Bleiberg-Kreuth) mit Silikaten im Gleichgewicht standen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borisenok, L.A., Saukov, A.A. (1960) Geochemical cycle of gallium, Intern. Geol. Congr. 21st, Copenhagen. Rept. Session, Norden, Part 1: 96Google Scholar
  2. Bürstenbinder, J., Dulski, P., Luck, J., Szacki, E. (1983) Analysis of the sulfide-ore-standard ASK III by SSMS, Intern. J. Mass Spectrometry and Ion Physics 47: 295–298CrossRefGoogle Scholar
  3. Fleischer, M. (1955) Minor elements in some sulphide minerals. Econ. Geol. 50: 970–1024Google Scholar
  4. Fruth, I., Maucher, A. (1966) Spurenelemente und Schwefel-Isotope in Zinkblenden der Blei-ZinkLagerstätte Gorno. Mineralium Deposita 1: 238–250CrossRefGoogle Scholar
  5. Fryklund, V.C., Fletcher, J.D. (1956) Geochemistry of sphalerite from the Star Mine Coeur d’Alene district, Idaho. Econ. Geol. 51: 223–247CrossRefGoogle Scholar
  6. Gijbels, R., Grieken, R.v., Blommert, W., Vandelannoote, R., Van’t Dach, L. (1980) Trace element geochemistry in thermal waters from Plobieres and Bains (Vosges). 2nd Intern. Sem. Results EC Geotherm. Energy Res., 4.-6. March, Strasbourg. Ext. Sum. 135–140Google Scholar
  7. Hegemann, F. (1960) ?ber extrusiv-sediment?re Erzlagerst?tten der Ostalpen, II. Teil: Blei-ZinkLagerst?tten. Erzmetall 12:79–84, 122–127Google Scholar
  8. Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci. 267: 729–804CrossRefGoogle Scholar
  9. Kuliev, A. ( 1965; cited by Hörmann, P.K.) Germanium. In: Wedepohl, K.H. (ed) Handbook of geochemistry II - 3. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. Kullerud, G. (1953) The FeS-ZnS system, a geological thermometer. Norsk Geol. Tids. 32: 61–147Google Scholar
  11. Möller, P., Dulski, P., Schley, F., Luck, J., Szacki, W. (1981) A new way of interpreting trace element concentrations with respect to modes of mineralization. J. Geochem. Explor. 15: 271–284CrossRefGoogle Scholar
  12. Omenetto, P. (1979) Significant ore fabric relationships in the lead, zinc, fluorite, and barite deposits of the Triassic province (Italian Southern Alps). Ann. Soc. Geol. Belg. T 102: 519–529Google Scholar
  13. Rösler, H.J., Lange, H. (1976) Geochemische Tabellen. Ed. Leipzig, p. 468Google Scholar
  14. Schneider, H.-J. (1954) Die sedimentäre Bildung von Flußspat im oberen Wettersteinkalk der nördlichen Kalkalpen. Abh. Bayer. Akad. Wiss., Math.-Naturwiss. M. 66: 1–37Google Scholar
  15. Schneider, H.-J. (1964) Facies differentiation and controlling factors for the depositional lead-zinc concentration in the Ladinian geosyncline of the Eastern Alps. In: Amstutz, G.C. (ed) Sedimentology and ore genesis. Dev. Sediment. 2:29–45Google Scholar
  16. Schneider, H.-J. (1969) The influence of connate water on ore mobilization of lead-zinc deposits in carbonate sediments (Summary). Meet. Remobil. Ores Miner., Cagliari, August 1969, p. 314–322Google Scholar
  17. Schroll, E. (1955) Über das Vorkommen einiger Spurenmetalle in Pb-Zn-Erzen der ostalpinen Metallprovinz. Tschermaks Miner. Petr. Mitt. 5 (3): 183–208CrossRefGoogle Scholar
  18. Sievers, R. (1962) Silica solubility, 0–200°C, and the diagenesis of siliceous sediments. J. Geol. 70: 127–138CrossRefGoogle Scholar
  19. Stoiber, R.E. (1940) Minor elements in sphalerite. Econ. Geol. 35: 501–519CrossRefGoogle Scholar
  20. Taupitz, K.C. (1954) Erze sedimentärer Entstehung auf alpinen Lagerstätten des Typs Bleiberg. Erzmetall 7: 343–348Google Scholar
  21. Warren, H.V., Thompson, R.M. (1945) Sphalerites from Western Canada. Econ. Geol. 40: 309–33CrossRefGoogle Scholar
  22. Wolter, R., Schneider, H.-J. (this vol.) Saline relics of formation water in the Wettersteinkalk and their genetical connection with the Pb-Zn mineralization, p. 223–230Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • P. Möller
    • 1
  • P. Dulski
    • 1
  • H.-J. Schneider
    • 2
  1. 1.Hahn-Meitner-Institut für Kernforschung Berlin GmbHBerlin 39Germany
  2. 2.Institut für Angewandte GeologieFreie Universität BerlinBerlin 33Germany

Personalised recommendations