Advertisement

Geriatrics 3 pp 373-424 | Cite as

The Eye in the Elderly: Lens

  • O. Hockwin
  • C. Ohrloff

Keywords

Aqueous Humor Lens Opacity Human Lens Lens Fiber Lens Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsler M, Brückner A, Franceschetti A, Goldmann H, Streif EB (1961) Lehrbuch der Augenheilkunde, 3rd edn. Karger, Basel, p 325Google Scholar
  2. Anderson El, Wright D, Spector A (1979) The strate of sulfhydryl groups in normal and cataractous human lens proteins. II. Cortical and nuclear regions. Exp Eye Res 29:223–243Google Scholar
  3. Augusteyn RC (1975) Distribution of fluorescence in the human cataractous lens. Ophthalmic Res 7:217–224Google Scholar
  4. Augusteyn RC, Collin HB (1980) The eye, vol 2. Eden, St. AlbansGoogle Scholar
  5. Augusteyn RC, Collin HB, Rogers KM (1979) The eye, vol 1. Eden, St. AlbansGoogle Scholar
  6. Banroques J, Scala H, Schapira F, Dreyfus IC (1978) The aging of enzymes in eye lens. Interdiscipl Top Gerontol 12:180–186Google Scholar
  7. Barber GW (1973) Human cataractogenesis: a review. Exp Eye Res 16:85–94PubMedGoogle Scholar
  8. Bargmann W (1962) Histologie und mikroskopische Anatomie des Menschen, 4th edn. Thieme, Stuttgart, p 725Google Scholar
  9. Bartolic K (1982) Untersuchungen zur Zusammensetzung des sekundären Kammerwassers. Dissertation, Medizinische Fakultät der Universität BonnGoogle Scholar
  10. Becker O (1877) Pathologie und Therapie des Linsensystems. In: Graefe-Saemisch (ed) Hdb ges Augenheilk, vol 5. Engelmann, LeipzigGoogle Scholar
  11. Bellows JG (1975) Cataract and abnormalities of the lens. Grune and Stratton, New YorkGoogle Scholar
  12. Bellows JG (1981) Linse. In: François J, Hollwich F (eds) Augenheilkunde in Klinik und Praxis, vol 2. Thieme, StuttgartGoogle Scholar
  13. Benedek GB (1971) Theory of transparency of the eye. Appl Opt 10:459–473PubMedGoogle Scholar
  14. Bernstein F, Bernstein M (1945) Law of physiologic aging as derived from long ranged data of refraction of the human eye. Arch Ophthalmol 34:378–388Google Scholar
  15. Bettelheim FA, Balazs EH (1981) (eds) Biophysical properties of the lens. Exp Eye Res 586–630Google Scholar
  16. Bito LZ, Petrinovic L, Salvador E (1973) The effects of the lens on the chemical composition of intraocular fluids, Abstr ARVO Meeting Sarasota, p 76/4Google Scholar
  17. Bloemendal H (ed) (1981) Molecular and cellular biology of the lens. Wiley, New YorkGoogle Scholar
  18. Borish JM (1970) Clinical refraction, 3rd edn. The Professional Press, Chicago, p 171Google Scholar
  19. Bours J, Hockwin O (1977) Charakterisierung der wasserlöslichen Proteine der Linse mittels Immunologie und Isoelektrofokussierung und ihre Beziehung zum Alterungsprozeß. Klin Monatsbl Augenheilkd 170:51–59PubMedGoogle Scholar
  20. Bours J, Neuhaus H, Hockwin O (1977) The thin-layer isoelectric focusing of lactate dehydrogenase isoenzymes in rabbit lens parts and in intraocular tissues. Albrecht von Graefes Arch Klin Exp Ophthalmol 203:9–19PubMedGoogle Scholar
  21. Bours J, Wieck A, Hockwin O (1978) Gel filtration chromatography of crystallins, DNA and RNA from different parts of bovine lens in dependence on age. Interdiscip Top Gerontol 12:205–220Google Scholar
  22. Bous F, Hockwin O, Ohrloff C, Bours J (1977) Investigation on phosphofructokinase (PFK, EC 2.7.1.11) in bovine lenses in dependence on age, topographic distribution and water soluble protein fractions. Exp Eye Res 24:383–389PubMedGoogle Scholar
  23. Braus H (1960) Anatomie des Menschen, vol 3, 2nd edn. Springer, Berlin Göttingen Heidelberg, p 623Google Scholar
  24. Brown N (1969) Slit-image photography. Trans Ophthalmol Soc UK 89:397–408Google Scholar
  25. Brown N (1973 a) Slit-image photography and measurement of the eye. Med Biol Illust 23:192–203Google Scholar
  26. Brown N (1973 b) Lens change with age and cataract; slit-image photography. In: The human lens in relation to cataract. Ciba Found Symp 19:65–78Google Scholar
  27. Bruun-Laursen A, Lorentzen SR (1974) Glucose, pyruvate and citrate concentration in the aqueous humor of humans. Acta Ophthalmol (Copenh) 52:477–489Google Scholar
  28. Chion SH, Chylack LT, Tung WH, Bunn HF (1981) Nonenzymatic glycosylation of bovine lens crystallins. J Biol Chem 256:5176–5180Google Scholar
  29. Clark R, Zigman S, Lerman S (1969) Studies on the structural proteins of the human lens. Exp Eye Res 8:172–182PubMedGoogle Scholar
  30. Cole DF (1970) The aqueous humor and ciliary body. In: Graymore CN (ed) Biochemistry of the eye. Academic, London, pp 105–181Google Scholar
  31. Coleman DJ (1970) Unified model for accommodation mechanism. Am J Ophthalmol 69:1062–1079Google Scholar
  32. Cordes FC (1957) Embryology of the lens. In: Haik GM (ed) Symposium on diseases and surgery of the lens. Mosby, St. Louis, pp 13–24Google Scholar
  33. Dische Z, Borenfreund E, Zelmenis G (1956) Changes in lens proteins of rats during aging. Arch Ophthalmol 55:471–483Google Scholar
  34. Dovrat A, Gershon G (1981) Rat lens superoxide dismutase and glueose-6-phosphate dehydrogenase: Studies on the catalytic activity and the fate of enzyme antigen as a function of age. Exp Eye Res 33:651–661PubMedGoogle Scholar
  35. Dragomirescu V, Hockwin O, Koch HR, Sasaki K (1978) Development of a new equipment for rotating slit image photography according to Scheimpflug’s principle. Interdiscip Top Gerontol 13:118–130Google Scholar
  36. Dreyfus JC, Rubinson H, Schapira F, Weber H, Marie J, Kahn H (1977) Possible molecular mechanisms of ageing. Gerontology 23:211–218PubMedGoogle Scholar
  37. Duke-Elder S (1963) System of ophthalmology, vol 2, pt 1, Kimton, London, pp 127–131Google Scholar
  38. Duncan G (ed) (1981) Mechanisms of cataract formation in the human eye. Academic, LondonGoogle Scholar
  39. Duverger C, Velter E (1930) Biomicroseopie du cristallin. Masson, ParisGoogle Scholar
  40. Fischer FP (1931) Ernährung und Stoffwechsel von Augengeweben. Ergebn Physiol 31:507–591Google Scholar
  41. Fischer FP (1938) Topographie der embryonalen Linse. Ber Zusammenkunft Dtsch Ophthalmol Ges 52:374–385Google Scholar
  42. François J, Rabaey M (1956) De l’existence d’une proteine cristallienne embryonaire. Ann Ocul 189–836-854Google Scholar
  43. Gershon H, Gershon D (1970) Detection of inactive enzyme molecules in aging organisms. Nature 227:1214–1217PubMedGoogle Scholar
  44. Graeber W (1966) Die Gewichts- und Volumenzunahme der menschlichen Linsen in Abhängigkeit vom Alter. Acta XX Congress Ophthalmol Germania 1:493–495Google Scholar
  45. Gullstrand A (1911) In: Von Helmholtz, Gullstrand A, Kries J, Nagel W (eds) Handbuch der physiologischen Optik, vol 1, 3rd edn. Voss, LeipzigGoogle Scholar
  46. Harding CV, Susan S, Murphy H (1976) Scanning electron microscopy of the adult rabbit lens. Ophthalmol Res 8:443–455Google Scholar
  47. Harding JJ (1973) Altered heat lability of a fraction of glutathione reductase in aging human lens. Biochem J 134:995–1000PubMedGoogle Scholar
  48. Harding JJ, Dilley KJ (1976) Structural protein of the mammalian lens: A review with emphasis on changes in development, aging and cataract. Exp Eye Res 22:1–73PubMedGoogle Scholar
  49. Harding JJ, Rixon KC, Marriot FHC (1977) Man have heavier lenses than woman of the same age. Exp Eye Res 25:651PubMedGoogle Scholar
  50. Hart WM, Peckham RH (1953) Changes in specific gravity of the growing crystalline lens. Arch Ophthalmol 50:174–176Google Scholar
  51. Hendrickson P, Koch HR (1977) Photographische Dokumentationsverfahren. In: Hockwin O, Koch HR (eds) Arzneimittelnebenwirkungen am Auge. Fischer, Stuttgart, pp 387–411Google Scholar
  52. Herbrink P, Bloemendal H (1974) Studies on β-crystallin. I. Isolation and partial characterization of the principle polypeptide chain. Biochim Biophys Acta 336:370–382Google Scholar
  53. Hockwin O (1961) Experimenteller Beitrag zur Wirkung von Röntgenstrahlen auf Stoffwechselabläufe der Augenlinse in Abhängigkeit vom Lebensalter. Habilitationsschrift, Universität BonnGoogle Scholar
  54. Hockwin O (1962) Early changes of lens metabolism after X-irradiation. Exp Eye Res 1:422–426PubMedGoogle Scholar
  55. Hockwin O (1969) Klinische Bedeutung der Erzeugung experimenteller Katarakte durch Addition unterschwelliger Schädigungsereignisse. Ophthalmologica 158:481–487PubMedGoogle Scholar
  56. Hockwin O (1971) Age changes of lens metabolism. In: Bredt H, Rohen JW (eds) Altern und Entwicklung, vol 1 : Age changes in the eye. Schattauer, Stuttgart, pp 95–129Google Scholar
  57. Hockwin O (1979) Aging of the lens and cataract. Paris INSERM Symp. Lens: development and aging, vol 60, pp 263–280Google Scholar
  58. Hockwin O (ed) (1978a) Lens ageing and development of senile cataract. Interdiscip Top Gerontol 12Google Scholar
  59. Hockwin O (ed) (1978b) Gerontological aspects of eye research. Interdiscip Top Gerontol 13Google Scholar
  60. Hockwin O (1978 c) Experimental design in the longevity project on eye changes in Wistar rats. Interdiscip Top Gerontol 13:88–94Google Scholar
  61. Hockwin O (1980) Linsenveränderungen nach Kammerwasserverlust. In: Naumann GOH, Gloor B (eds) Wundheilung des Auges und ihre Komplikationen. Bergmann, München, pp 97–102Google Scholar
  62. Hockwin O (1981) Zur Pathogenese und Therapie der Alterskatarakt. Historische Aspekte und neue Vorstellungen. Hist Ophthalmol Intern 2:115–131Google Scholar
  63. Hockwin O (1982 a) Veränderungen des Kohlenhydratstoffwechsels beim Altern. In: Hockwin O (ed) Altern der Linse, Symposium Strasbourg 1982, Mayr, Miesbach, pp 33–44Google Scholar
  64. Hockwin O (1982 b) Multifaktorielle Genese von Linsentrübungen im Alter und medikamentöses Vorgehen. In: Hockwin O (ed) Altern der Linse. Symposium Strasbourg 1982, Mayr, Miesbach, pp 81–85Google Scholar
  65. Hockwin O (1982 c) Gibt es eine medikamentöse Behandlung des grauen Stars? Fortschr Med 29:1355–1360Google Scholar
  66. Hockwin O (to be published, a) Relevanz neuer Erkenntnisse aus der Grundlagenforschung für Pathogenese und Therapie der Katarakt. Nova Acta LeopoldGoogle Scholar
  67. Hockwin O, Dragomirescu V (1981 a) Die Scheimpflug-Photographie des vorderen Augenabschnittes. Eine Methode zur Messung der Linsentransparenz im Rahmen einer Verlaufsbeobachtung. Z Prakt Augenheilkd 2:129–136Google Scholar
  68. Hockwin O, Dragomirescu V (1981 b) Scheimpflug-Photographie des vorderen Augenabschnittes. Eine Methode zur Messung der Linsentransparenz im Rahmen einer Verlaufsbeobachtung. In: Regnault F (ed) Symposium über die Augenlinse. Excerpta Medica, Amsterdam, pp 65–81Google Scholar
  69. Hockwin O, Dragomirescu V (1982) Verlaufsbeobachtungen von Linsentrübungen mit der Scheimpflug-Photographie und densitometrischer Bildanalyse. In: Hockwin O (ed) Altem der Linse. Symposium Strasbourg 1982. Mayr, Miesbach pp 125–138Google Scholar
  70. Hockwin O, Kleifeld O (1965) Das Verhalten von Fermentaktivitäten in einzelnen Linsenteilen unterschiedlich alter Rinder und ihre Beziehung zur Zusammensetzung des wasserlöslichen Eiweißes. In: Rohen JW (ed) Die Struktur des Auges. II. Symposium. Schattauer, Stuttgart, pp 395–401Google Scholar
  71. Hockwin O, Koch HR (1975) Combination effects on noxious influences on the crystalline lens. In: Bellows JG (ed) Cataract and abnormalities of the lens. Grune and Stratton, New York, pp 243–254Google Scholar
  72. Hockwin O, Koch HR (1976) Fortschritte auf dem Gebiet der experimentellen Kataraktforschung. Ihre Bedeutung für die praktische Augenheilkunde. In: Küchle H (ed) Aktuelle Ophthalmologie, Fachalmanach für die Augenheilkunde. Lehmann, München, pp 77–100Google Scholar
  73. Hockwin O, Lerman S (1982) Clinical evaluation of direct and photosensitized UV radiation damage to the lens. Ann Ophthalmol 14:220–223PubMedGoogle Scholar
  74. Hockwin O, Weigelin E (1981) Arzneimittelbehandlung der menschlichen Alterskatarakt. Kontrollierte Studie zur Prüfung der Wirksamkeit eines Präparates. In: Regnault F (ed) Symposium über die Augenlinse. Excerpta Medica, Amsterdam, pp 65–81Google Scholar
  75. Hockwin O, Klein W, Korte I (1972) Beiträge zur ökologischen Chemie. 80. Veränderungen der Enzymaktivitäten der Linse des Auges durch Umweltchemikalien. Chemosphe- re 6:261–266Google Scholar
  76. Hockwin O, Fink H, Glasmacher M (1976 a) Carbohydrate metabolism of the lens depending on age. II. Factoranalysis on changes of different enzyme activities and on changes in the concentration of glycolytic metabolism in bovine lenses. Z Alternsforsch 31:521–535Google Scholar
  77. Hockwin O, Fink H, Ohrloff C (1976 b) Carbohydrate metabolism of the lens depending on age. Evaluation of factor analysis. 5th European Symposium Basic Research in Gerontology, Weimar, GDR, 1976. Straube, Erlangen, pp 632–645Google Scholar
  78. Hockwin O, Koch HR, Ohrloff C, Bours J (1976 c) Altem der Linse und Kataraktentstehung. Klin Monatsbl Augenheilkd 169:165–181PubMedGoogle Scholar
  79. Hockwin O, Kaskel D, Weigelin E (1978 a) The importance of the lens in intraocular fluid exchange - demonstrated by biochemical interrelations in the system aqueous humor/ lens. Doc Ophthalmol Proc Ser 16:129–136Google Scholar
  80. Hockwin O, Rast F, Rink H, Münninghoff J, Twenhoeven H (1978 b) Watercontent of lenses of different species. Interdiscip Top Gerontol 13:102–108Google Scholar
  81. Hockwin O, Dragomirescu V, Koch HR (1979 a) Photographic documentation of disturbances of the lens transparency during ageing with a Scheimpflug camera system. Ophthalmic Res 11:405–410Google Scholar
  82. Hockwin O, Rast-Czyborra F, Schnitzlein W, Müller HJ (1979 b) Age dependence of wet weight and water content of the Beagle dog Lens. Ophthalmol Res 11:136–142Google Scholar
  83. Hockwin O, Dragomirescu V, Laser H (1983) Measurement of lens transparency or its disturbances by densitometrie image analysis of Scheimpflugphotographs. Graefes Arch Clin Ophthalmol 219:255–262Google Scholar
  84. Hockwin O, Weigelin E, Kleifeld O (to be published, b)Google Scholar
  85. Hoenders HJ, Bloemendal H (1982) Veränderungen des Proteinstoffwechsel beim Altern. In: Hockwin O (ed) Altern der Linse. Symposium Strasbourg 1982. Mayr, Miesbach, pp 45–58Google Scholar
  86. Hoenders HJ, Bloemendal H (1983) lens protein und aging. Symposium the ocular lens as a model for studying aging parameters. Gerontol 38:278–286Google Scholar
  87. Hoenders HJ, Van Kamp GJ, Liem-The K, Van Kleef FSM (1973) Heterogeneity, aging and polypeptide composition of α-erystallin from calf lens. Exp Eye Res 15:193–200PubMedGoogle Scholar
  88. Ismail RM, Edelbi AH, Rösinger N (1977) Chemical composition of the aqueous humor of bovine eyes dependent on predetermined time upon removal. Albrecht von Graefes Arch Klin Ophthalmol 207:55–62Google Scholar
  89. Jess A (1920) Die Monoaminosäuren der Linsenproteine. Z Physiol Chem 110:266–276Google Scholar
  90. Johansen EV (1947) Studies on the inter-relation in size between the cornea and the crystalline lens in man, with special references to its significance for intercapsular cataract extraction (in Danish). Munksgaard, CopenhagenGoogle Scholar
  91. Kabasawa I, Kinoshita JH (1974) Aging effects on the bovine lens γ-crystallins. Exp Eye Res 18:457–466PubMedGoogle Scholar
  92. Kaskel D, Scholz D, Hockwin O, Ziesmer W (1975) Composition of the aqueous humor/ lens after carotid ligation. Ophthalmic Res 9:409–415Google Scholar
  93. Kern HL, Ho CK (1973) Transport of L-glutamie-acid and L-glutamine and their incorporation into lenticular glutathione. Exp Eye Res 17:455–462PubMedGoogle Scholar
  94. Kibbelaar MA, Ramaekers FCS (1980) Is actin in eye lens a possible factor in visual accommodation? Nature 285:506–508PubMedGoogle Scholar
  95. Kinsey VE (1957) Comparative chemistry of aqueous humor in posterior and anterior chamber of rabbit eye. Arch Ophthalmol 50:401–417Google Scholar
  96. Kinsey VE, Reddy VN (1973) Studies on the crystalline lens. X. Transport of amino acids. Invest Ophthalmol Vis Sci 2:229–236Google Scholar
  97. Kleifeld O (1954) Experimentelle Beiträge zum intrakapsulären Akkommodationsmechanismus. Habilitationsschrift, Universität BonnGoogle Scholar
  98. Kleifeld O (1956) Beiträge zum intrakapsulären Akkommodationsmechanismus. Doc Ophthalmol 10:132–173Google Scholar
  99. Kleifeld O, Hockwin O, Fuchs R (1956) Untersuchungen über die wasserlöslichen Eiweiße in Kern und Rinde der Linsen alter und junger Tiere und menschlicher klarer und getrübter Linsen. Ber Zusammenkunft Dtsch Ophthalmol Ges 60:108–112Google Scholar
  100. Klethi J, Mandel P (1965) Eye lens nucleotides of different species of vertebrates. Nature 205:1114–1115PubMedGoogle Scholar
  101. Kobayashi Y, Susuki T (1975) The aging lens: ultrastructural changes in cataract. In: Bellows JG (ed) Cataract and abnormalities of the lens. Grune and Stratton, New York, pp 313–343Google Scholar
  102. Koby FE (1924) Microscopie de l’oeil vivant. Masson, ParisGoogle Scholar
  103. Koch HR (1976) Klinische und experimentelle Untersuchungen über den Einfluß von Corticosteroiden auf die Augenlinse. Habilitationsschrift, Medizinische Fakultät der Universität BonnGoogle Scholar
  104. Koch HR, Ebertz KH, Hockwin O (1973) Konservative Katarakttherapie in Klinik und Experiment. Doc Ophthalmol 35:85–286PubMedGoogle Scholar
  105. Koch HR, Kremer E, Linnér E, Hockwin O, Kaufmann H, Breull W, Dahners HW (1974) On the influence of a monolateral carotid ligation upon formation of radiation cataracts in rats. Ophthalmic Res 6:175–181Google Scholar
  106. Koch HR, Ohrloff C, Bours J, Riemann G, Dragomirescu V, Hockwin O (1982) Separation of lens proteins in rats with tryptophan deficiency cataracts. Exp Eye Res 34:479–486PubMedGoogle Scholar
  107. Kramps JA, Hoenders HJ, Wollensak J (1978) Increase of non-disulphide cross links during progress of nuclear cataract. Exp Eye Res 27:731–735PubMedGoogle Scholar
  108. Krause AC (1934) The biochemistry of the eye. John Hopkins, BaltimoreGoogle Scholar
  109. Kretzberg W (1982) Die Veränderungen im Stoffwechsel der Linse nach Punktion der Vorderkammer bei Kaninchen. Dissertation, Medizinische Fakultät der Universität BonnGoogle Scholar
  110. Kuck JFR (1975) Composition of the lens. In: Bellows JG (ed) Cataract and abnormalities of the lens. Grune and Stratton, New York, pp 69–96Google Scholar
  111. Kuck JFR, Crosswell HH (1974) Lens as a chief source of fructose in aqueous humor. Ophthalmic Res 6:189–196Google Scholar
  112. Kuwabara T (1975) The maturation of the lens cell: a morphologic study. Exp Eye Res 20:427–443PubMedGoogle Scholar
  113. Larsen JS (1971) The sagittal growth of the eye. II: Ultrasonic measurement of the axial diameter of the lens and the anterior segment from birth to puberty. Acta Ophthalmol 49:427–435Google Scholar
  114. Lepper RD, Trier HG, Reuter R (1980) Neuartige Ultraschallbiometrie. Klin Monatsbl Augenheilkd 177:101–106PubMedGoogle Scholar
  115. Lerman S (1980 a) Lens transparency and ageing. In: Regnault F, Hockwin O, Courtois Y (eds) Symposium ageing of the lens, 1979. Elsevier/North Holland Biomedical, Amsterdam, pp 263–279Google Scholar
  116. Lerman S (ed) (1980 b) Radiant energy and the eye. Macmillan, New YorkGoogle Scholar
  117. Lerman S, Borkman RF (1976) Spectroscopic evaluation and classification of the normal, ageing and cataractous lens. Ophthalmol Res 8:335–353Google Scholar
  118. Lerman S, Hockwin O (1981) UV-visible slit lamp densitography of the human eye. Exp Eye Res 33:587–596PubMedGoogle Scholar
  119. Lerman S, Hockwin O, Dragomirescu V (1981) In vivo lens fluorescence photography. Ophthalmol Res 13:224–228Google Scholar
  120. Maclean H (1978) A controlled trial of Catalin in senile cortical cataract. Acta XXIII. Concil Ophthalmol Japonica. 2:1357–1361Google Scholar
  121. Masters PM, Bader JL, Zigler JS Jr (1978) Aspartic acid racemization in heavy molecular weight crystallins and water insoluble protein from normal human lenses and cataracts. Proc Natl Acad Sci USA 75:1204–1208PubMedGoogle Scholar
  122. Meesmann A (1927) Die Mikroskopie des lebenden Auges an der Gullstrandschen Spaltlampe mit Atlas typischer Befunde. Urban und Schwarzenberg, BerlinGoogle Scholar
  123. Miller D, Benedek G (1973) Intraocular light scattering. Thomas, Springfield, 111Google Scholar
  124. Monnier VM, Stevens VJ, Cerami A (1980) Nonenzymatic glycosylation of hemoglobin and lens crystallins. In: Srivastava (ed) Red blood cell and lens metabolism. Elsevier North-Holland, New YorkGoogle Scholar
  125. Müller HK (1938) Uber den Linsenstoffwechsel. Enke, Stuttgart, pp 205–218Google Scholar
  126. Müller HK (1939) Kohlenhydratstoffwechsel der Linse. Albrecht von Graefes Arch Klin Exp Ophthalmol 140:171–190Google Scholar
  127. Newsom WA, Hockwin O (1967) Chromatographic separation of calf and ox lens proteins. Albrecht vn Graefes Arch Klin Exp Ophthalmol 171:318–328Google Scholar
  128. Niesei P (1966 a) Spaltlampenphotographie mit der Haag-Streit Spaltlampe 900. Opthalmologica 151:489–504Google Scholar
  129. Niesei P (1966 b) Spaltlampenphotographie der Linse für Meßzwecke. Opthalmologica 152:387–395Google Scholar
  130. Niesei P (1982) Scheimpflug-Photographie des vorderen Augenabschnittes als Methode zur Beurteilung (und Messung) der Linsentransparenz. In: Hockwin O (ed) Altem der Linse. Symposium Strasbourg 1982. Mayr, Miesbach, pp 121–124Google Scholar
  131. Niesei P, Bachmann E (1974) Beobachtungen am Abspaltungsstreifen der Linse bei Glaukomkranken. Albrecht von Graefes Arch Klin Ophthalmol 189:211–217Google Scholar
  132. Niesei P, Rokos L (1976) Der Abspaltungsstreifen in der Spaltlampenphotographie der Linse bei Augenerkrankungen. Albrecht von Graefes Arch Klin Ophthalmol 199:21–29Google Scholar
  133. Niesei P, Kräuchi H, Bachmann E (1976) Der Abspaltungsstreifen in der Spaltlampenphotographie der alternden Linse. Albrecht von Graefes Arch Klin Ophthalmol 199:11–20Google Scholar
  134. Norby A (1958) On the growth of the crystallin lens, the eyeball and the cornea in the rat. Acta Ophthalmol (Copenh) [Suppl] 49Google Scholar
  135. Nordmann J (1954) Biologie du cristallin. Masson, ParisGoogle Scholar
  136. Nordmann J (1962) Acquisitions récentes dans le domaine de la biologie du cristallin. Fortschr Augenheilkd 12:1–264Google Scholar
  137. Nordmann J (1972) Problems in cataract research. Ophthalmol Res 3:329–359Google Scholar
  138. Nordmann J (1977) Au sujet du vieillissement du cristallin humain et de la pathogénie de la cataracte sénile. Adv Ophthalmol 34:1–73PubMedGoogle Scholar
  139. Nordmann J, Fink H, Hockwin O (1974) Die Wachstumskurve der menschlichen Linse. Albrecht von Graefes Arch Klin Ophthalmol 191:165–175Google Scholar
  140. Ohrloff C (1978) Age changes of enzyme properties in crystalline lens. Interdiscip Top Gerontol 12:158–179Google Scholar
  141. Ohrloff C (1979) Altern der Augenlinse. Untersuchungen über molekulare und funktionelle Veränderungen von Enzymen des Kohlenhydratstoffwechsels während des Alterungsprozesses, die Anlaß zur Entwicklung seniler Linsentrübungen sein können. Habilitationsschrift, Universität BonnGoogle Scholar
  142. Ohrloff C, Stoffel C, Koch HR, Wefers U, Bours J, Hockwin O (1978) Experimental cataracts in rats due to tryptophanfree diet. Albrecht von Graefes Arch Klin Exp Ophthalmol 205:73–79PubMedGoogle Scholar
  143. Ohrloff C, Teimann U, Hockwin O (1979 a) Post-synthetic alterations of bovine lens enzymes demonstrated by heat lability measurements. Doc Ophthalmol Proc Ser 18:205–217Google Scholar
  144. Ohrloff C, Güntert A, Braun W, Hockwin O (1979 b) Untersuchungen des Verteilungsmusters der Aldolase Isoenzyme A, B und C und Bestimmung inaktiver Enzymmoleküle in Linsen verschiedenen Alters durch quantitative immunologische Präzipitation. Z Gerontol 12:40–45PubMedGoogle Scholar
  145. Ohrloff C, Bensch J, Jaeger M, Hockwin O (1980 a) Immunologie detection of inactive enzyme molecules in the ageing lens. Exp Eye Res 31:573–579PubMedGoogle Scholar
  146. Ohrloff C, Lange G, Hockwin O (1980 b) Postsynthetic changes of glutathione peroxidase and glutathione reductase in the ageing bovine lens. Mechanisms of ageing and development 14:453–458PubMedGoogle Scholar
  147. Ohrloff C, Berdjis H, Hockwin O, Bours J (1983) Age related changes of glyceraldehyde- 3-phosphate dehydrogenase E.C. 1.2.1.12),3-phosphoglyceratekinase (E.C. 2.7.2.3), phosphoglyceratemutase (E.C. 2.7.5.3), and enolase (E.C. 4.2.1.11) in bovine lenses. Ophthalmic Res 15:293–299PubMedGoogle Scholar
  148. Phillips CI, Bartholomew RS, Clayton R, Duffy J, Seth J, Reid JM, Cuthbert J, Alexander M (1981) Katarakte: Ursächliche Faktoren und Zusammenhänge. In: Regnault F (ed) Symposium über die Augenlinse. Excerpta Medica, Amsterdam, pp 19–24Google Scholar
  149. Phillips CI, Bartholomew RS, Clayton R, Duffy J, Seth J, Cuthbert J (1982) Untersuchungen zur Frage nach ursächlichen und assoziierten Einflüssen bei der Alterskatarakt. In: Hockwin O (ed) Altern der Linse. Symposium Strasbourg 1982. Mayr, Miesbach, pp 25–30Google Scholar
  150. Pohjola S (1966) The glucose content of aqueous humor in man. Acta Ophthalmol (Copenh) [Suppl] 88Google Scholar
  151. Regnauld J (1858) Sur la fluorescence des milieux de l’oeil chez hommes et quelques mammifers. L’Institut 26:410Google Scholar
  152. Ringens JP, Hoenders HJ, Bloemendal H (1982) Protein distribution and characterization in the prenatal and postnatal human lens. Exp Eye Res 34:815–823PubMedGoogle Scholar
  153. Robinson AB, McKerrow JH, Cary P (1970) Controlled deamidation of peptides and proteins: an experimental hazard and biological timer. Proc Natl Acad Sci USA 66:753–757PubMedGoogle Scholar
  154. Sasaki K, Shibata T, Fukada M, Hockwin O (1980) Changes of lens transparency with ageing: A clinical study with human volunteers using a Scheimpflug camera. In: Regnault F, Hockwin O, Courtois Y (eds) Ageing of the lens. Elsevier/North-Holland Biomedical, Amsterdam, pp 195–206Google Scholar
  155. Saunte OH (1905) Linse maalinger. OdenseGoogle Scholar
  156. Sauter H (1951) Die Trübungsformen der menschlichen Linse. Thieme, StuttgartGoogle Scholar
  157. Scammon RE, Hesdorffer MB (1937) Growth in mass and volume of human lens in postnatal life. Arch Ophthalmol 17:104–112Google Scholar
  158. Scheimpflug T (1906) Der Photoperspektograph und seine Anwendung. Photogr Korresp 43:516–531Google Scholar
  159. Schmutter J (1961) Untersuchungen über die Altersabhängigkeit des Gewichtes und Volumens von Rinderlinsen. Dissertation, Universität BonnGoogle Scholar
  160. Scholz R, Kaskel D, Hockwin O (1976) The effect of unilateral pressure ischemia on the carbohydrate metabolism in some ocular tissues. Ophthalmol Res 8:195–201Google Scholar
  161. Siezen RJ, Bindels JG, Hoenders HJ (1979) The interrelationship between monomeric, oligomeric and polymeric a-crystallin in the calf lens nucleus. Exp Eye Res 28:551–567PubMedGoogle Scholar
  162. Spector A, Li LH, Augusteyn RC, Schneider A, Freund T (1971) a-crystallin. The isolation and characterization of distinct macromolecular fractions. Biochem J 124:337–343PubMedGoogle Scholar
  163. Sprenger U (1966) Ultraschallbiometrie des menschlichen Auges in Abhängigkeit vom Lebensalter. Dissertation, Universität BonnGoogle Scholar
  164. Srivastava SK (ed) (1980) Red blood cell and lens metabolism. Development biochemistry, vol 9. Elsevier/North Holland, New YorkGoogle Scholar
  165. Stein AH, Slatt BJ (1968) The ophthalmic assistent; fundamentals and clinical practice. Mosby, St. Louis, p 3Google Scholar
  166. Stevens VJ, Vlassara H, Abati A, Cerami A (1977) Nonenzymatic glycosylation of hemoglobin. J Biol Chem 252:2998–3002PubMedGoogle Scholar
  167. Trayhurn P, Van Heyningen R (1973) The metabolism of glutamine in the bovine lens. Exp Eye Res 17:149–154PubMedGoogle Scholar
  168. Truscott RJW, Faull K, Augusteyn RC (1977) The identification of anthranilic acid in proteolytic digests of cataractous lens proteins. Ophthalmol Res 9:263–268Google Scholar
  169. Van Kamp GJ, Hoenders HJ (1973) The distribution of the soluble proteins in the calf lens. Exp Eye Res 17:417–426PubMedGoogle Scholar
  170. Varma SD, Reddy VN (1972) Phospholipid composition of aqueous humor, plasma and lens in normal and alloxan diabetic rabbits. Exp Eye Res 13:120–125PubMedGoogle Scholar
  171. Varma SD, Srivastava SK, Richards RD (1982) Photoperoxidation in lens and cataract formation: Preventive role of superoxide dismutase, catalase and vitamin C. Ophthalmol Res 14:167–175Google Scholar
  172. Vogt A (1921) Atlas der Spaltlampenmikroskopie des lebenden Auges. Springer, BerlinGoogle Scholar
  173. Vogt A (1922) Weitere Ergebnisse der Spaltlampenmikroskopie des vorderen Bulbusabschnittes. Albrecht von Graefes Arch Klin Ophthalmol 109:154–204Google Scholar
  174. Vogt A (1931) Linse und Zonula. Springer, Berlin (Lehrbuch und Atlas der Spaltlampenmikroskopie des lebenden Auges, vol 2)Google Scholar
  175. Von Helmholtz H (1855) Über die Accommodation des Auges. Albrecht von Graefes Arch Ophthalmol 1:1–74Google Scholar
  176. Von Helmholtz H (1896) Handbuch der physiologischen Optik, 2nd edn. Voss, HamburgGoogle Scholar
  177. Weale RA (1963) The aging lens. Lewis, LondonGoogle Scholar
  178. Weber D (1961) Über die mittlere Lebensdauer von Linseneiweißen, untersucht am lebendigen Kaninchen. Ber Zusammenkunft Dtsch Ophthalmol Ges 64:196–299Google Scholar
  179. Weekers R, Delmarcelle Y, Luyckx JB, Collignon J (1973) Morphological changes of the lens with age and cataract. CIBA Found Symp 19:25–43Google Scholar
  180. Weigelin E, Hockwin O (1982) Bericht über eine zufallsverteilte, kontrollierte klinische Studie mit PHAKAN(r)/PHAKOLEN(r). In: Hockwin O (ed) Altem der Linse. Symposium Strasbourg 1982. Mayr, Miesbach, pp 183–199Google Scholar
  181. Weigelin E, Boutros G, Hockwin O (1982) Konservative Kataraktbehandlung. Prüfung von Medikamenten. Diagn Intensivmed 7:48–54Google Scholar
  182. Winter E (1981) Geometrische und densitometrische Vermessung des vorderen Augenabschnittes an Spaltlampenphotographien, die mit einer neuartigen, nach dem Scheimpflug-Prinzip arbeitenden Kamera erhalten werden. Dissertation, Universität BonnGoogle Scholar
  183. Yanoff M, Fine B (1975) Ocular pathology. Harper and Row, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • O. Hockwin
  • C. Ohrloff

There are no affiliations available

Personalised recommendations