Geriatrics 3 pp 352-372 | Cite as

Aqueous Humor and Vitreous Production

  • K. Green
  • E. A. Balazs
  • J. L. Denlinger


The volume and physical dimensions of the anterior chamber have been well studied, reflecting the ease of determination by optical techniques and ultrasonography. Anterior chamber depth increases by about 50% between birth and 2 years of age and thereafter undergoes a slow asymptotic increase until the age of about 14 years as a result of flattening of the anterior lens surface (Larsen1971 a, b). The lens continues to grow (Weekerset al. 1966; Sorsbyand Leary1970) which contributes to the decrease in both depth and volume of the anterior chamber with age.


Intraocular Pressure Anterior Chamber Collagen Fibril Trabecular Meshwork Sodium Hyaluronate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman PL, Dittmer DS (1974) Biology data book, 2nd edn, vol 3. Federation of American societies for experimental biology, Bethesda, MarylandGoogle Scholar
  2. Armaly MF (1965) On the distribution of applanation pressure. I. Statistical features and the effect of age, sex and family history of glaucoma. Arch Ophthalmol 73:11–18PubMedGoogle Scholar
  3. Armaly MF (1967) Age and sex correction of applanation pressure. Arch Ophthalmol 78:480–484PubMedGoogle Scholar
  4. Armaly MF, Sayegh RD (1970) Water drinking test. II The effect of age on tonometric and tonographic measures. Arch Ophthalmol 83:176–181PubMedGoogle Scholar
  5. Balazs EA (1954) Structure of the vitreous gel. Acta XVII Congress Ophthalmol 11:1019–1024Google Scholar
  6. Balazs EA (1961) Molecular morpholgy of the vitreous body. In: Smelser GK (ed) The structure of the eye. Academic, New York, p 293Google Scholar
  7. Balazs EA (1965) Amino sugar-containing macromolecules in the tissues of the eye and the ear. In: Balazs EA, Jeanloz RW (eds) The amino sugars: The chemistry and biology of compounds containing amino sugar. II-A Distribution and biological role. Academic, New York, p 401Google Scholar
  8. Balazs EA (1968) The molecular biology of the vitreous. In: McPherson A (ed) New and controversial aspects of retinal detachment. Harper and Row, New York, p 3Google Scholar
  9. Balazs EA (1973) The vitreous. Int Ophthalmol Clin 13:169–187PubMedGoogle Scholar
  10. Balazs EA (1982) Functional anatomy of the vitreus. In: Jakobiec F (ed) Ocular anatomy, embryology and teratology. Harper and Row, Philadelphia, pp 425–440Google Scholar
  11. Balazs EA, Denlinger JL (1979) Vitreous and join-comparative morphology and biochemistry. Atti Giorgio Ronchi 34:637–647Google Scholar
  12. Balazs EA, Denlinger JL (1982) Aging changes in the vitreus. National Academy of Sciences, Washington D.C.Google Scholar
  13. Balazs EA, Flood MT (1978) Age-related changes in the physical and chemical structure of human vitreous. Presented at the 3rd International congress of eye research, Osaka, JapanGoogle Scholar
  14. Balazs EA, Laurent TC, Laurent UBG, De Roche MH, Bunney DM (1959) Studies on the structure of the vitreous body. VIII. Comparative biochemistry. Arch Biochem Biophys 81:464–479PubMedCrossRefGoogle Scholar
  15. Balazs EA, Toth LZ, Ozanics V (1980) Cytological studies on the developing vitreous as related to the hyaloid vessel system. Albrecht Von Graefes Arch Klin Ophthalmol 213:71–85CrossRefGoogle Scholar
  16. Bankes JLK, Perkins ES, Tsolakis S, Wright JE (1968) Bedford glaucoma survey. Br Med J 1:791–796PubMedCrossRefGoogle Scholar
  17. Bárány E (1963) A mathematical formulation of intraocular pressure as dependent on secretion, ultrafiltration, bulk outflow, and osmotic reabsorption of fluid. Invest Ophthalmol Vis Sci 2:584–590Google Scholar
  18. Becker B (1958) The decline in aqueous secretion and outflow facility with age. Am J Ophthalmol 46:731–736PubMedGoogle Scholar
  19. Bengtsson B (1972) Some factors affecting the distribution of intraocular pressures in a population. Acta Ophthalmol (Copenh) 50:33–46Google Scholar
  20. Bloom GD, Balazs EA (1965) An electron microscopic study of hyalocytes. Exp Eye Res 4:249–255PubMedCrossRefGoogle Scholar
  21. Bloom GD, Balazs EA, Ozanics V (1980) The fine structure of the hyaloid arteriole in bovine vitreous. Exp Eye Res 31:129–145PubMedCrossRefGoogle Scholar
  22. Bloom N, Levene RZ, Thomas G, Kimura R (1976) Fluorophotometry and the rate of aqueous flow in man. Arch Ophthalmol 94:435–443PubMedGoogle Scholar
  23. Boles-Carenini B, Cambiaggi A (1957) Are aqueous humor dynamics influenced by aging? Am J Ophthalmol 44:395–401PubMedGoogle Scholar
  24. Brubaker RF, Nagataki S, Townsend DJ, Burns RR, Higgins RG, Wentworth W (1981) The effect of age on aqueous humor formation in man. Ophthalmology 88:283–288PubMedGoogle Scholar
  25. Bruun Laursen A (1972) Citrate and pyruvate concentrations in bovine aqueous humor. Acta Ophthalmol (Copenh) 50:420–430Google Scholar
  26. Bruun Laursen A (1973) Pyruvate and citrate concentrations in rabbit aqueous humor determined by an enzymatic procedure. Acta Ophthalmol (Copenh) 51:700–709Google Scholar
  27. Bruun Laursen A, Lorentzen SE (1974) Glucose, pyruvate and citrate concentrations in the aqueous humor of human cataractous eyes. Acta Ophthalmol (Copenh) 52:477–489Google Scholar
  28. Calmettes L, Deodati F, Huron H, Béchac G (1958) Etude de la profondeur de la chambre antérieure. Arch Ophthalmol (Paris) 18:513–542Google Scholar
  29. Carpel EF, Engstrom PF (1981) The normal cup-disk ratio. Am J Ophthalmol 91:588–597PubMedGoogle Scholar
  30. Caulfield JB (1964) Medical progress: Application of the electron microscope to renal diseases. N Eng J Med 270:183–194CrossRefGoogle Scholar
  31. Coakes RL, Brubaker RF (1979) Method of measuring aqueous humor flow and corneal endothelial permeability using a fluorophotometry nomogram. Invest Ophthalmol Vis Sci 18:288–302PubMedGoogle Scholar
  32. Cole DF (1978) ciliary processes. In: Heilmann K, Richardson KT (eds) Glaucoma. Saunders, Philadelphia, p 44Google Scholar
  33. Colton T, Ederer F (1980) The distribution of intraocular pressures in the general population. Surv Ophthalmol 25:123–129PubMedCrossRefGoogle Scholar
  34. Dangel ME, Havener WH (1981) Drugs and the aging eye. Geriatrics 36:133–140PubMedGoogle Scholar
  35. De Berardinis E, Tieri O, Inglio N, Polzella A (1966) The composition of the aqueous humor of man in aphakia. Acta Ophthalmol (Copenh) 44:64–68Google Scholar
  36. Denlinger JL (1982) Metabolisme de l’hyaluronate de sodium au niveau des tissus articulaires et oculaires. Doctoral thesis, Université de Lille, p 369Google Scholar
  37. Denlinger JL, Eisner G, Balazs EA (1980) Age-related changes in the vitreus and lens of rhesus monkey (Macaca mulatta). Exp Eye Res 31:67–79PubMedCrossRefGoogle Scholar
  38. Duke-Elder WS (1968) System of ophthalmology, vol 4. The physiology of the eye and of vision. Mosby, St. LouisGoogle Scholar
  39. Eisner G (1975) Zur Anatomie des Glaskörpers. Albrecht Von Graefes Arch Klin Ophthalmol 193:33–56CrossRefGoogle Scholar
  40. Eisner G (1976) The anatomy and biochemistry of the vitreous body. Doc Ophthalmol Proc Ser 7:87–104CrossRefGoogle Scholar
  41. Favre M, Goldmann H (1956) Zur Genese der hinteren Glaskörperabnebung. Ophthalmologica 132:87–97PubMedCrossRefGoogle Scholar
  42. Fine BS (1964) Observations on the drainage angle in man and rhesus monkey: A concept of the pathogeneis of chronic simple glaucoma. Invest Ophthalmol Vis Sci 3:609–646Google Scholar
  43. Fine BS, Tousimis AJ (1961) The structure of the vitreous body and the suspensory system of the lens. Arch Ophthalmol 4:95–110Google Scholar
  44. Fine BS, Yanoff M (1979) Ocular histology. A text and atlas, 2nd edn. Harper and Row, HagerstownGoogle Scholar
  45. Fine BS, Zimmerman LE (1963) Light and electron microscopic observations on the ciliary epithelium in man and rhesus monkey. Invest Ophthalmol Vis Sci 2:105–137Google Scholar
  46. Fine BS, Yanoff M, Stone RA (1981) A clinicopathological study of four cases of primary open-angle glaucoma compared to normal eyes. Am J Ophthalmol 91:88–105PubMedGoogle Scholar
  47. Flood MT, Balazs EA (1977) Hyaluronic acid content in the developing and aging human liquid and gel vitreous. Invest Ophthalmol Vis Sci [Suppl] 16:67Google Scholar
  48. Fontana S, Brubaker RF (1980) Volume and depth of the anterior chamber in the normal aging human eye. Arch Ophthalmol 98:1803–1808PubMedGoogle Scholar
  49. Freeman MI, Jacobson B, Balazs EA (1979) The chemical composition of vitreous hyalocyte granules. Exp Eye Res 29:479–484PubMedCrossRefGoogle Scholar
  50. Gaasterland E (1981) Discussion of paper by Brubaker et al. (1981). Ophthalmology 88:287–288Google Scholar
  51. Gaasterland DE, Kupfer C, Milton R, Ross K, McCain L, MacLellan H (1978) Studies of aqueous humor dynamics in man. VI. Effect of age upon parameters of intraocular pressure in normal human eyes. Exp Eye Res 26:651–656PubMedCrossRefGoogle Scholar
  52. Ganley JP (1980) Epidemiological aspects of ocular hypertension. Surv Ophthalmol 25:130–135PubMedCrossRefGoogle Scholar
  53. Gärtner J (1965) Beziehungen zwischen Fuundusdiagnostik und Elektronenmikroskopie, dargestellt am Beispiel der Glaskörperrinde in der Ora-Serrata-Gegend. „Netzhautablösung“. Mod Probl Ophthalmol 5:154–169Google Scholar
  54. Gärtner J (1970) Electron microscopic observations on the cilio-zonular border area of the human eye with particular reference to the aging changes. Z Anat Entwicklungsgeseh 131:263–273CrossRefGoogle Scholar
  55. Girsch SJ, Zigman S (1981) Biochemical studies of vitreous relative to age. Invest Ophthalmol Vis Sci [Suppl] 20:139Google Scholar
  56. Gloor PP (1973) Zur Entwicklung des Glaskörpers und der Zonula. III. Herkunft, Lebenszeit und Ersatz der Glaskörperzellen beim Kaninchen (Autoradiographische Untersuchungen mit 3H-thymidin). Albrecht Von Graefes Arch Klin Ophthalmol 187:21–44CrossRefGoogle Scholar
  57. Goldmann H (1951) Abflussdruck, Minuten volumen und Widerstand der KammerwasserStrömung des Menschen. Doc Ophthalmol 5:278–356PubMedCrossRefGoogle Scholar
  58. Goldmann H (1962) Senescenz des Glaskörpers. Ophthalmologica 143:253–279CrossRefGoogle Scholar
  59. Graham PA, Hollows FC (1964) Sources of variation in tonometry. Trans Ophthalmol Soc UK 84:597–613PubMedGoogle Scholar
  60. Grant WM (1951) Clinical measurements of aqueous outflow. Arch Ophthalmol 46:113–131Google Scholar
  61. Green K, Gaasterland DE, Milton R, Bowman K (1978) Influence of aging on aqueous humor production. Interdiscipl Top Gerontol 13:14Google Scholar
  62. Gross J, Matoltsy AG, Cohen C (1955) Vitrosin: A member of the collagen class. J. Biophys Biochem Cytol 1:215–220PubMedCrossRefGoogle Scholar
  63. Heim M (1941) Photographische Bestimmung der Tiefe und des Volumens der menschlichen Vorderkammer. Ophthalmologica 102:193–220CrossRefGoogle Scholar
  64. Hockwin O, Koch HR (1978) Lens. In: Heilmann K, Richardson KT (eds) Glaucoma. Saunders, Philadelphia, p 67Google Scholar
  65. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the Human Eye. Saunders, PhiladelphiaGoogle Scholar
  66. Hollows FC, Graham PA (1966) Intraocular pressure, glaucoma and glaucoma suspects in a defined population. Br J Ophthalmol 50:570–586PubMedCrossRefGoogle Scholar
  67. Huggert A (1957) An experiment in determining the pore-size distribution curve to the filtration angle of the eye. I. Acta Ophthalmol (Copenh) 35:12–19CrossRefGoogle Scholar
  68. Hultsch E, Balazs EA (1973) In vitro synthesis of glyeosaminoglycans and glycoproteins in cells of the vitreous. Association for research in vision and ophthalmology, p 43Google Scholar
  69. Irvine SR (1953) A newly defined vitreous syndrome following cataract surgery; interpreted according to recent concepts of the structure of the vitreous. Am J Ophthalmol 36:599–619Google Scholar
  70. Ismail RM, Edelbi AH, Rösinger M (1977) Chemical composition of the aqueous humor of bovine eyes dependent on predetermined time upon removal. Albrecht Von Graefes Arch Klin Ophthalmol 202:55–62CrossRefGoogle Scholar
  71. Jacobson B (1976) Biosynthesis of hyaluronic acid in the vitreous. V. Studies on an particulate hyalocyte glycosyl transferase. Exp Eye Res 27:246–258Google Scholar
  72. Johnson SB, Coakes RL, Brubaker RF (1978) A simple photogrammetric method of measuring aqueous humor volume. Am J Ophthalmol 85:469–474PubMedGoogle Scholar
  73. Jones RF, Maurice DM (1966) New methods of measuring the rate of aqueous flow in man with fluorescein. Exp Eye Res 5:208–220PubMedCrossRefGoogle Scholar
  74. Kahn HA, Leibowitz HM, Ganley JP (1977) The Framingham eye study. I. Outline and major prevalence findings. Am J Epidemiol 106:17–32Google Scholar
  75. Kaskel D, Scholz R, Hockwin O, Zeismer W (1975) Composition of aqueous humor and lens after carotid ligation. Ophthalmol Res 7:409–415CrossRefGoogle Scholar
  76. Katavisto M, Sammalkivi J (1964) Tonometry among persons over 40 years of age. Acta Ophthalmol (Copenh) 42:370–377Google Scholar
  77. Kolker AE, Hetherington J (1970) Diagnosis and therapy of the glaucomas, 3rd edn. Mosby, St. LouisGoogle Scholar
  78. Kornblueth W, Aladjemoff L, Magora F, Ben Dor D (1964) Intraocular pressure in children measured under general anesthesia. Arch Ophthalmol 72:489–490Google Scholar
  79. Kuck JFR (1963) Sugar and sugar alcohol levels in the aging rat lens. Invest Ophthalmol (Vis Sci) 2:607–611Google Scholar
  80. Kuck JFR, Croswell HH (1974) Lens as the chief source of fructose in rabbit aqueous humor. Ophthalmol Res 6:189–196CrossRefGoogle Scholar
  81. Kupfer C (1973) Clinical significance of pseudofacility. Am J Ophthalmol 75:173–204Google Scholar
  82. Larsen JS (1971 a) The sagittal growth of the eye. I. Ultrasonic measurement of the depth of the anterior chamber from birth to puberty. Acta Ophthalmol (Copenh) 49:239–262Google Scholar
  83. Larsen JS (1971 b) The sagittal growth of the eye. II. Ultrasonic measurement of the axial diameter of the lens and the anterior segment from birth to puberty. Acta Ophthalmol (Copenh) 49:427–453Google Scholar
  84. Laurent TC, Barany EH, Carlsson B, Tidare E (1969) Determination of hyaluronic acid in the microgram range. Anal Biochem 31:133–145PubMedCrossRefGoogle Scholar
  85. Laurent UBG (1981) Hyaluronate in aqueous humour. Exp Eye Res 33:147–155PubMedCrossRefGoogle Scholar
  86. Laurent UBG (1982) Studies on endogenous sodium hyaluronate in the eye. Doctoral thesis, Acta Universitatis Uppsaliensis 428Google Scholar
  87. Le Rebeller MJ, Crockett R, Maurain C, Sirieix F (1976) Nouvelle contribution à l’étude des composants de l’humeur aqueuse chez le sujet normal par utilisation des techniques d’analyses automatiques. Arch Ophthalmol (Paris) 36:749–764Google Scholar
  88. Leydhecker W, Akiyama K, Neumann HG (1958) Der interokulare Druck gesunder menschlicher Augen. Klin Monatsbl Augenheilkd 133:662–670Google Scholar
  89. Lindstedt F (1916) Über die Messung der Tiefe der vorderen Augenkammer mittels eines neuen, für klinischen Gebrauch bestimmten Instrumentes. Arch Augenheilkd 80:104–167Google Scholar
  90. Lowe RF, Clark BAJ (1973) Posterior corneal curvature. Correlations in normal eyes and in eyes involved with primary angle-closure glaucoma. Br J Ophthalmol 57:464–470PubMedCrossRefGoogle Scholar
  91. Matoltsy AG (1952) A study on the structural protein of the vitreous body (vitrosin). J Gen Physiol 36:29–37CrossRefGoogle Scholar
  92. Matoltsy AG, Gross J, Grignolo A (1951) A study of the fibrous components of the vitreous body with the electron microscope. Proc Soc Exp Biol Med 76:857–860PubMedGoogle Scholar
  93. McMenamin PG, Lee WR (1980) Age related changes in extracellular materials in the inner wall of Schlemm’s canal. Albrecht Von Graefes Arch Klin Ophthalmol 212:159–172CrossRefGoogle Scholar
  94. Meyer K, Palmer JW (1934) The polysaccharide of the vitreous humor. J Biol Chem 107:629–634Google Scholar
  95. Missoten L (1964) L’ultrastructure des tissus occulaire. Bull Soc Belge Ophthalmol 136:3–204Google Scholar
  96. Newsome DA, Linesenmayer TF, Trelstad RD (1976) Vitreous body collagen. J Cell Biol 71:59–67PubMedCrossRefGoogle Scholar
  97. O’Brien CS, Salit PW (1931) The chemical constituents of the aqueous, vitreous and lens. A comparative study on animal eyes. Am J Ophthalmol 14:582–589Google Scholar
  98. Österlin SE, Jacobson B (1968) The synthesis of hyaluronic acid in vitreous I. Soluble and particulate transferases in hyalocytes. Exp Eye Res 7:497–510PubMedCrossRefGoogle Scholar
  99. Pederson JE, Green K (1973) Aqueous humor dynamics: A mathematical approach to measurement of facility, pseudofacility, capillary pressure, active secretion and xc. Exp Eye Res 15:265–276PubMedCrossRefGoogle Scholar
  100. Pischel DK (1953) Detachment of the vitreous as seen with slit-lamp examination. Am J Ophthalmol 36:1497–1507PubMedGoogle Scholar
  101. Pohjola S (1966) The glucose content of the aqueous humor in man. Acta Ophthalmol (Copenh) [Suppl] 88:11–80Google Scholar
  102. Prijot E (1961) Contribution a l’étude de la tonométrie et de la tonographie en ophthalmologie. Doc Ophthalmol 15:1–225PubMedCrossRefGoogle Scholar
  103. Raeder JG (1922) Untersuchungen über die Lage und Dicke der Linse im menschlichen Auge bei physiologischen und pathologischen Zuständen, nach einer neuen Methode gemessen. Albrecht von Graefes Arch Klinik Ophthalmol 110:73–108CrossRefGoogle Scholar
  104. Rentsch FJ, Van der Zypen E (1971) Altersbedingte Veränderungen der sogenannten Membrana limitans interna des Ziliarkörpers im menschlichen Auge. In: Bredt H, Rohen JW (eds) Altem und Entwicklung. Schattauer, Stuttgart, p 70Google Scholar
  105. Richter S, Horn D, Bergknoff H (1979) A survey of intraocular pressures with emphasis on patients under ten years of age. Am J Optom Physiol Opt 56:193–196PubMedGoogle Scholar
  106. Rohen JW, Lütjen-Drecoll E (1971) Age changes of the trabecular meshwork in human and monkey eyes. In: Bredt H, Rohen JW (eds) Ageing and development. Schattauer, Stuttgart, p 1Google Scholar
  107. Rosen E (1962) Vitreous detachment. Associated nuclear sclerosis. Am J Ophthalmol 54:837–841PubMedGoogle Scholar
  108. Rosengren B (1930) Studien über die Tiefe der vorderen Augenkammer mit besonderer Hinsicht auf ihr Verhalten beim primären Glaukom. Acta Ophthalmol (Copenh) 8:99–136Google Scholar
  109. Schwartz B, Kern J (1980) Age, increased ocular and blood pressures, and retinal and disc fluorescein angiogram. Arch Ophthalmol 98:1980–1986PubMedGoogle Scholar
  110. Schwarz W (1951) Die Gelbkörperfibrillen des menschlichen Glaskörpers. In: Verhandlungen der Anatomischen Gesellschaft auf der 49. Versammlung in Heidelberg. Fischer, JenaGoogle Scholar
  111. Segawa K (1979) Electron microscopic changes of the trabecular tissue in primary open-angle glaucoma. Ann Ophthalmol 11:49–54PubMedGoogle Scholar
  112. Snowden JM, Swann DA (1980) Vitreous structure. V. The morphology and thermal stability of vitreous collagen fibers and comparison to articular cartilage (type II) collagen. Invest Ophthalmol Vis Sci 19:610–618PubMedGoogle Scholar
  113. Sorsby A, Leary G (1970) A longitudinal study of refraction and its components during growth. Medical research council, Special report ser 309, Her Majesty’s stationary office, LondonGoogle Scholar
  114. Spencer RW, Helmick ED, Scheie HG (1955) Tonography: Technical difficulties and control studies. Arch Ophthalmol 54:515–527Google Scholar
  115. Spurgeon WM, Boles-Carenini B, Cambiaggi A (1958) Are aqueous humor dynamics influenced by aging? II. Am J Ophthalmol 46:845–855Google Scholar
  116. Stenstrom S (1946) Untersuchungen über die Variation und Kovariation der optischen Elemente des menschlichen Auges. Acta Ophthalmol (Copenh) [Suppl] 26:1–103Google Scholar
  117. Szirmai JA, Balazs EA (1958) Studies on the structure of the vitreous body. III. Cells in the cortical layer. Arch Ophthalmol 59:34–48Google Scholar
  118. Teng CC, Paton RT, Katzin HM (1955) Primary degeneration in the vicinity of the chamber angle as an etiological factor in wide-angle glaucoma. Am J Ophthalmol 40:619–631PubMedGoogle Scholar
  119. Tolentino FI, Schepens CL (1965) Edema of posterior pole after cataract extraction: a biomicroscopic study. Arch Ophthalmol 74:781–786PubMedGoogle Scholar
  120. Tolentino FI, Schepens CL, Freeman HM (1976) Vitreoretinal disorders, diagnosis and management. Saunders, PhiladelphiaGoogle Scholar
  121. Tomlinson A, Leighton DA (1973) Ocular dimensions in the heredity of angle-closure glaucoma. Br J Ophthalmol 57–475-486PubMedCrossRefGoogle Scholar
  122. Tomlinson A, Leighton DA (1974) Ocular dimensions and the heredity of open-angle glaucoma. Br J Ophthalmol 58:68–74PubMedCrossRefGoogle Scholar
  123. Van Nerom PR, Rosenthal AR, Jacobson DR, Pieper I, Schwartz H, Grieder BW (1981) Iris angiography and aqueous photofluorometry in normal subjects. Arch Ophthalmol 99:489–493PubMedGoogle Scholar
  124. Weekers R, Grieten J (1961) La mesure de la profondeur de la chambre antérieure en clinique. Bull Soc Belge Ophthalmol 129:361–381Google Scholar
  125. Weekers R, Watillon M, DeRudder M (1956) Experimental and clinical investigations into the resistance to outflow of aqueous humour in normal subjects. Br J Ophthalmol 40:225–233PubMedCrossRefGoogle Scholar
  126. Weekers R, Grieten J, Lavergne G (1961) Etude des dimensions de la chambre antérieure de l’oeil humain. Ophthalmologica 142:650–662PubMedCrossRefGoogle Scholar
  127. Weekers R, Luyckx-Bacus J, Weekers JF (1966) Etude ultrasonique des dimensions respectives des segments antérieur et postérieur du globe oculaire dans diverses affections génétiques. In: Oksala A, Gennet H (eds) Ultrasonics in ophthalmology: Proceedings on the Munster symposium. Karger, Basel, p 215Google Scholar
  128. Worthen DM (1978) Intraocular pressure and its diurnal variation. In: Heilmann K, Richardson KT (eds) Glaucoma. Saunders, Philadelphia, p 54Google Scholar
  129. Yanoff M, Fine BS (1975) Ocular pathology. A text and atlas. Harper and Row, Hagerstown, pp 594–598Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • K. Green
  • E. A. Balazs
  • J. L. Denlinger

There are no affiliations available

Personalised recommendations