Skip to main content

Developmental Significance of Light-Mediated Electrical Responses in Plant Tissue

  • Chapter
Photomorphogenesis

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 16))

Abstract

Electrical measurements in cells and tissues serve two major purposes. The first, previously reviewed in this series (Findlay and Hope 1976), is in the evaluation of whether the movement of particular ions across membranes is passive or active. The second is in the detection of membrane-localized changes that indicate alterations in the physiological status of plant cells. Since observations of electrical phenomena are made relatively non-destructively in living cells, they can provide a continuous record of cell membrane activity under a variety of physiological conditions. Accordingly, certain electrical measurements have proven to be useful in detailing the initial events of such complex responses as growth, nastic movements, morphogenetic transformations and reaction to stress. Although the electrical phenomena in plants precede conspicuous developmental changes, it is not clear if, or how, the electrical events play a causal role in these responses. This review intends to examine the evidence for light-induced changes in electrical parameters in plant tissue, and evaluate the relationship of such electrical signals to longer-term photomorphogenetic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA 38:662–666

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR (1976) The nature of the blue light photoreceptor in higher plants and fungi. In: Smith H (ed) Light and plant development. Butterworth, London, pp 7–18

    Google Scholar 

  • Brownlee C, Kendrick RE (1979) Ion fluxes and phytochrome protons in mung bean hypocotyl segments. I. Fluxes of potassium. Plant Physiol 64:206–210

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Nabors MW, Ross CW, Petretic NL (1979 a) The growth physics and water relations of red light-induced germination in lettuce seeds. III. Changes in the osmotic and pressure potential in the embryonic axes of redand far-red-treated seeds. Planta 144:217–224

    Article  Google Scholar 

  • Carpita NC, Nabors MW, Ross CW, Petretic NL (1979 b) The growth physics and water relations of red light-induced germination in lettuce seeds. IV. Biochemical changes in the embryonic axes of redand far-red-treated seeds. Planta 144:225–233

    Article  CAS  Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:18–27

    Article  Google Scholar 

  • Cleland RE (1973) Auxin-induced hydrogen ion excretion from Avena coleoptiles. Proc Natl Acad Sci USA 70:3092–3093

    Article  PubMed  CAS  Google Scholar 

  • Cleland RE, Rayle DL (1975) Hydrogen ion entry as a controlling factor in the acidgrowth response of green pea stem sections. Plant Physiol 55:547–549

    Article  PubMed  CAS  Google Scholar 

  • Cooke TJ, Paolillo DJ Jr (1980) The control over the orientation of cell division in fern gametophytes. Am J Bot 67:1320–1333

    Article  Google Scholar 

  • Dai WR, Galston AW (1981) Simultaneous promotion and inhibition of arginine decarboxylase activity in buds and epicotyls of etiolated peas. Plant Physiol 67:266–269

    Article  PubMed  CAS  Google Scholar 

  • Davson H (1951) Textbook of general physiology. Churchill, London

    Google Scholar 

  • Degreef JA, Butler WL, Roth TF, Fredericq H (1971) Control of senescence in Marcantia by phytochrome. Plant Physiol 48:407–412

    Article  CAS  Google Scholar 

  • Drake FA, Carr DJ, Anderson WP (1978) Plasmolysis, plasmodesmata and the electrical coupling of oat coleoptile cells. J Exp Bot 29:1205–1212

    Article  Google Scholar 

  • Dreyer EM, Weisenseel MH (1979) Phytochrome-mediated uptake of calcium in Mougeotia cells. Planta 146:31–39

    Article  CAS  Google Scholar 

  • Elul R (1967) Fixed charge in the cell membrane. J Physiol 189:351–365

    PubMed  CAS  Google Scholar 

  • Errera L (1886) Sur une condition fondamentale d’equilibre des cellules rivantes. CR Acad Sci SerB 103:822–824

    Google Scholar 

  • Evans HJ, Sorger GJ (1966) Role of mineral elements with emphasis on the univalent cations. Annu Rev Plant Physiol 17:47–75

    Article  CAS  Google Scholar 

  • Evans ML (1972) Promotion of cell elongation in Avena coleoptiles by acetylcholine. Plant Physiol 50:414–416

    Article  PubMed  CAS  Google Scholar 

  • Findlay GP, Hope AB (1976) Electrical properties of plant cells: methods and findings. In: Lüttge U, Pitman MG (eds) Transport in plants II. Encyclopedia of plant physiology new ser vol 2 A. Springer, Berlin Heidelberg New York, pp 53–92

    Chapter  Google Scholar 

  • Furuya M, Torrey JG (1964) The reversible inhibition by red and far-red light of auxininduced lateral root initiation in isolated pea roots. Plant Physiol 39:987–991

    Article  PubMed  CAS  Google Scholar 

  • Galston AW (1959) Phototropism of stems, roots and coleoptiles. In: Ruhland W (ed) Encyclopedia of plant physiology vol XVII/1. Springer, Berlin Göttingen Heidelberg, pp 492–529

    Google Scholar 

  • Galston AW, Baker RS (1951) Studies on the physiology of light action III. Light activation of a flavoprotein enzyme by reversal of naturally occurring inhibition. Am J Bot 38:190–195

    Article  CAS  Google Scholar 

  • Grahm L (1964) Measurements of geoelectric and auxin-induced potentials in coleoptiles with a refined vibrating electrode technique. Physiol Plant 17:231–261

    Article  Google Scholar 

  • Gressel J (1979) Blue light photoreception. Photochem Photobiol 30:749–754

    Article  CAS  Google Scholar 

  • Hale CC II, Roux SJ (1980) Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells. Plant Physiol 65:658–662

    Article  PubMed  CAS  Google Scholar 

  • Hartmann E (1975) Influence of light on the bioelectric potential of the bean(Phaseolus vulgaris) hypocotyl hook. Physiol Plant 33:266–275

    Article  CAS  Google Scholar 

  • Hopkins WG, Hillman WS (1965) Response of excised Avena coleoptile segments to red and far-red light. Planta 65:157–166

    Article  Google Scholar 

  • Jaffe MJ (1968) Phytochrome-mediated bioelectric potentials in mung bean seedlings. Science 162:1016–1017

    Article  PubMed  CAS  Google Scholar 

  • Jaffe MJ (1970) Evidence for the regulation of phytochrome mediated processes in bean roots by the neurohumor acetylcholine. Plant Physiol 46:768–777

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LF, Nuccitelli R (1974) An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol 63:614–628

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Annu Rev Biophys Bioeng 6:445–476

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LF, Robinson KR, Nuccitelli R (1974) Local cation entry and self-electrophoresis as an intracellular localization mechanism. Ann NY Acad Sci 238:372–389

    Article  PubMed  CAS  Google Scholar 

  • Klein WH, Withrow RB, Elstad V (1956) Response of the hypocotyl hook of bean seedlings to radiant energy and other factors. Plant Physiol 31:289–294

    Article  PubMed  CAS  Google Scholar 

  • Köhler D, v Willer K, Lüttge U (1968) Phytochromabhängige Veränderungen des Wachstums und der Ionenaufnahme etiolierter Erbsenkeimlinge. Planta 83:35–48

    Article  Google Scholar 

  • Lintilhac PM (1974) Differentiation, organogenesis, and the tectonics of cell wall orientation III. Theoretical considerations of cell wall mechanics. Am J Bot 61:230–237

    Article  Google Scholar 

  • Lürssen K (1976) Counteraction of phytochrome to the IAA-induced hydrogen ion excretion in Avena coleoptile cylinders. Plant Sci Lett 6:389–399

    Article  Google Scholar 

  • Lund EJ (1947) Bioelectric fields and growth. Univ Texas Press, Austin Mancinelli AL (1978) The “high irradiance responses” of plant photomorphogenesis. Bot Rev 44:129–180

    Google Scholar 

  • Mertz SM, Higinbotham N (1976) Transmembrane electropotential in barley roots as related to cell type, cell location, and cutting and aging effects. Plant Physiol 57:123–128

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41:445–502

    Article  PubMed  CAS  Google Scholar 

  • Nachmansohn D (1971) Chemical events in conducting and synaptic membranes during electrical activity. Proc Natl Acad Sci USA 68:3170–3174

    Article  PubMed  CAS  Google Scholar 

  • Newman IA (1963) Electric potentials and auxin translocation in Avena. Aust J Biol Sci 16:629–645

    CAS  Google Scholar 

  • Newman I A, Briggs WR (1972) Phytochrome-mediated electric potential changes in oat seedlings. Plant Physiol 50:687–693

    Article  PubMed  CAS  Google Scholar 

  • Newman I A, Sullivan JK (1976) Auxin transport in oats: a model for the electric changes. In: Wardlaw I, Passioura J (eds) Transport and transfer processes in plants. Academic Press, London New York, pp 153–159

    Chapter  Google Scholar 

  • Pike CS, Richardson AE (1977) Phytochrome-controlled hydrogen ion excretion by Avena coleoptiles. Plant Physiol 59:615–617

    Article  PubMed  CAS  Google Scholar 

  • Pratt LH (1979) Phytochrome: function and properties. In: Smith KC (ed) Photochem Photobiol Rev vol 4. Plenum, New York, pp 59–124

    Chapter  Google Scholar 

  • Pratt LH, Coleman RA (1974) Phytochrome distribution in etiolated grass seedlings as assayed by an indirect antibody-labelling method. Am J Bot 61:195–202

    Article  CAS  Google Scholar 

  • Racusen RH (1976) Phytochrome control of electrical potentials and intercellular coupling in oat coleoptile tissue. Planta 132:25–29

    Article  CAS  Google Scholar 

  • Racusen RH, Etherton B (1975) Role of membrane-bound, fixed-charge changes in phytochrome-mediated mung bean root tip adherence phenomenon. Plant Physiol 55:491–495

    Article  PubMed  CAS  Google Scholar 

  • Racusen RH, Galston AW (1980) Phytochrome modifies blue light-induced electrical changes in corn coleoptiles. Plant Physiol 66:534–535

    Article  PubMed  CAS  Google Scholar 

  • Racusen RH, Miller K (1972) Phytochrome-induced adhesion of mung bean root tips to platinum electrodes in a direct current field. Plant Physiol 49:654–655

    Article  PubMed  CAS  Google Scholar 

  • Racusen RH, Satter RL (1975) Rhythmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini. Nature 255:408–410

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H, Goodman DBP (1975) Calcium and cAMP as interrelated intracellular messengers. Ann NY Acad Sci 253:789–796

    Article  PubMed  CAS  Google Scholar 

  • Robinson KR, Jaffe LF (1975) Polarizing focoid eggs drive a calcium current through themselves. Science 187:70–72

    Article  PubMed  CAS  Google Scholar 

  • Roux SJ (1980) Inhibition of geotropism and associated calcium redistribution by calmodulin-binding agent. Proc NASA Space Biol Symp. Ames Res Center, Calif

    Google Scholar 

  • Roux SJ, Yguerabide S (1973) Photoreversible conductance changes induced by phytochrome in model lipid membranes. Proc Natl Acad Sci USA 70:762–764

    Article  PubMed  CAS  Google Scholar 

  • Schrank AR (1946) Note on the effect of unilateral illumination on the transverse electrical polarity in the Avena coleoptile. Plant Physiol 21:362–365

    Article  PubMed  CAS  Google Scholar 

  • Slayman CL (1974) Proton pumping and generalized energetics of transport: a review. In: Zimmermann U, Dainty J (eds) Membrane transport in plants. Springer, Berlin Heidelberg New York, pp 107–119

    Chapter  Google Scholar 

  • Song PS (1980) Spectroscopic and photochemical characterization of flavoproteins and carotenoproteins as blue light photoreceptors. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 157–171

    Chapter  Google Scholar 

  • Spanswick RM (1974) Hydrogen ion transport in giant algal cells. Can J Bot 52:1029–1034

    Article  CAS  Google Scholar 

  • Tagawa T, Bonner J (1957) Mechanical properties of the Avena coleoptile as related to auxin and ionic interactions. Plant Physiol 32:207–212

    Article  PubMed  CAS  Google Scholar 

  • Tanada T (1968) A rapid photoreversible response of barley root tips in the presence of 3-indoleacetic acid. Proc Natl Acad Sci USA 59:376–380

    Article  PubMed  CAS  Google Scholar 

  • Tanada T (1972) On the involvement of acetylcholine in phytochrome action. Plant Physiol 49:860–861

    Article  PubMed  CAS  Google Scholar 

  • Tanada T (1973 a) Indoleacetic acid and abscisic acid antagonism I. On the phytochromemediated attachment of mung bean root tips on glass. Plant Physiol 51:150–153

    Article  PubMed  CAS  Google Scholar 

  • Tanada T (1973 b) Indolacetic acid and abscisic acid antagonism II. On the phytochromemediated attachment of barley root tips on glass. Plant Physiol 51:154–157

    Article  PubMed  CAS  Google Scholar 

  • Tanada T (1978) Boron-key element in the actions of phytochrome and gravity. Planta 143:109–111

    Article  CAS  Google Scholar 

  • Thomson BF (1951) The relation between age at the time of exposure and response of parts of theAvena seedling to light. Amer J Bot 38:635–638

    Article  Google Scholar 

  • Thomson BF (1954) The effect of light on cell division and cell elongation in seedlings of oats and peas. Am J Bot 41:326–332

    Article  Google Scholar 

  • Weisenseel MH, Ruppert HK (1977) Phytochrome and calcium ions are involved in light-induced membrane depolarization inNitella. Planta 137:225–229

    Article  CAS  Google Scholar 

  • Weisenseel MH, Smeibidl E (1973) Phytochrome controls the water permeability in Mougeotia. Z Pflanzenphysiol 70:420–431

    CAS  Google Scholar 

  • Yunghans H, Jaffe MJ (1970) Phytochrome controlled adhesion of mung bean root tips to glass: a detailed characterization of the phenomenon. Physiol Plant 23:1004–1016

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Racusen, R.H., Galston, A.W. (1983). Developmental Significance of Light-Mediated Electrical Responses in Plant Tissue. In: Shropshire, W., Mohr, H. (eds) Photomorphogenesis. Encyclopedia of Plant Physiology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68918-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68918-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68920-8

  • Online ISBN: 978-3-642-68918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics