Semi-Infinite Programming and Applications

  • S.-Å. Gustafson
  • K. O. Kortanek


An important list of topics in the physical and social sciences involves continuum concepts and modelling with infinite sets of inequalities in a finite number of variables. Topics include: engineering design, variational inequalities and saddle value problems, nonlinear parabolic and bang-bang control, experimental regression design and the theory of moments, continuous linear programming, geometric programming, sequential decision theory, and fuzzy set theory. As an optimization involving only finitely many variables, semi-infinite programming can be studied with various reductions to finiteness, such as finite subsystems of the infinite inequality system or finite probability measures.

This survey develops the theme of finiteness in three main directions: (1) a duality theory emphasizing a perfect duality and classification analogous to finite linear programming, (2) a numerical treatment emphasizing discretizations, cutting plane methods, and nonlinear systems of duality equations, and (3) separably-infinite programming emphasizing its uniextremal duality as an equivalent to saddle value, biextremal duality. The focus throughout is on the fruitful interaction between continuum concepts and a variety of finite constructs.


Convex Program Dual Pair Dual Program Optimal Experimental Design Moment Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreasson, D. O., and G. A. Watson: Linear Chebyshev Approximation Without Che- byshev Sets. BIT 16 (1970), 349–362.CrossRefGoogle Scholar
  2. Atwood, C. L.: Optimal and Efficient Designs of Experiments. Ann. Math. Statist. 40 (1969), 1570–1602.MathSciNetMATHCrossRefGoogle Scholar
  3. Ben-Tal, A.: Second Order Theory of Extremum Problems. Extremal Methods and Systems Analysis (edited by A. V. Fiacco and K. O. Kortanek) 174. Berlin-Heidelberg- New York: Springer-Verlag, 1980, 336–356.Google Scholar
  4. Ben-Tal, A., A. Ben-Israel, and E. Rosinger: A Helley-Type Theorem and Semi-Infinite Programming. Constructive Approaches to Mathematical Models (edited by C. V. Coffman and G. J. Fix ). New York: Academic Press, 1979, 127–135.Google Scholar
  5. Ben-Tal, A., M. Teboulle, and J. Zowe: Second Order Necessary Optimality Conditions for Semi-Infinite Programming Problems. Semi-Infinite Programming (edited by R. Hettich ). Berlin-Heidelberg-New York: Springer-Verlag, 1979.Google Scholar
  6. Blair, C. E.: A Note on Infinite Systems of Linear Inequalities in Rn. J. Math. Anal, and Appl. 1 (48) (1974), 150–154.MathSciNetCrossRefGoogle Scholar
  7. Blair, C. E.: A Survey of Ascent Ray Results and Their Applications. To appear (1983).Google Scholar
  8. Blum, E. and W. Oettli: Mathematische Optimierung. Berlin-Heidelberg-New York: Springer-Verlag, 1975.MATHCrossRefGoogle Scholar
  9. Böhning, D.: Numerische Methoden in der Versuchsplanung. Ph. D. Thesis, Dept. of Mathematics, Freie Universität. Berlin, 1980.Google Scholar
  10. Bojanic, R. and R. DeVore: On Polynomials of Best One-Sided Approximation. L’En- seignement Mathematique XII (3) (1966).Google Scholar
  11. Borwein, J. M.: Adjoint Process Duality. To appear in Math, of Operations Research.Google Scholar
  12. Borwein, J. M.: Direct Theorems in Semi-Infinite Convex Programming. Math. Programming 21 (1981a), 301–318.MathSciNetMATHCrossRefGoogle Scholar
  13. Borwein, J. M.: Convex Relations in Analysis and Optimization. Generalized Concavity in Optimization and Economics. New York: Academic Press, 1981b, 335–377.Google Scholar
  14. Borwein, J. M.: The Limiting Lagrangian as a Consequence of Helley’s Theorem. J.O.T.A. 33 (4) (1981c), 497–513.MATHCrossRefGoogle Scholar
  15. Borwein, J. M.: Lexicographic multipliers. J. Math. Anal. Appl. 78 (1980), 309–327.MathSciNetMATHCrossRefGoogle Scholar
  16. Borwein, J. M.: Semi-Infinite Programming: How Special Is It? To appear (1983).Google Scholar
  17. Borwein, J. M. and K. O. Kortanek: Fenchel Duality and Separably-Infinite Programs. Optimization; Math. OP. & Stat. (Ilmenau), 14 (1983).Google Scholar
  18. Brosowski, B.: Parametric Semi-Infinite Programming. Methoden und Verfahren der Mathematischen Physik. Bei. 22, Frankfurt/M., Bern, 1981.Google Scholar
  19. Charnes, A.: Constrained Games and Linear Programming. Proc. Nat. Acad. Sci., USA 38 (1953), 639–641.MathSciNetCrossRefGoogle Scholar
  20. Charnes, A. and W. W. Cooper: Management Models and Industrial Applications of Linear Programming, Vols. I and II. New York: J. Wiley & Sons, 1961.Google Scholar
  21. Charnes, A., W. W. Cooper and K. O. Kortanek: Duality, Haar Programs and Finite Sequence Spaces. Proc. Nat. Acad. Sci., USA 48 (1962 a), 783–786.Google Scholar
  22. Charnes, A., W. W. Cooper and K. O. Kortanek: A Duality Theory for Convex Programs with Convex Constraints. Bull, of the American Math. Soc. 68 (6) (1962 b), 605–608.Google Scholar
  23. Charnes, A., W. W. Cooper and K. O. Kortanek: Duality in Semi-Infinite Programs and Some Works of Haar and Caratheodory. Management Sci. 9 (1963), 209–228.MathSciNetMATHCrossRefGoogle Scholar
  24. Charnes, A., W. W. Cooper and K. O. Kortanek: On Representations of Semi-Infinite Programs Which Have No Duality Gaps. Management Sci. 12 (1965), 113–121.MathSciNetCrossRefGoogle Scholar
  25. Charnes, A., W. W. Cooper and K. O. Kortanek: On the Theory of Semi-Infinite Programming and Some Generalizations of Kuhn-Tucker Saddle Point Theorems for Arbitrary Convex Functions. Nav. Res. Log. Quart. 16 (1969), 41–51.MathSciNetMATHGoogle Scholar
  26. Charnes, A., P. R. Gribik and K. O. Kortanek: Separably-Infinite Programming. Z. Op. Res. 24 (1980 a), 33–45.Google Scholar
  27. Charnes, A., P. R. Gribik and K. O. Kortanek: Polyextremal Principles and Separably- Infinite Programs. Z. Op. Res. 25 (1980 b), 211–234.Google Scholar
  28. Charnes, A., K. O. Kortanek and V. Lovegren: A Saddle Value Characterization of Fan’s Equilibrium Points. To appear (1983).Google Scholar
  29. Charnes, A., K. O. Kortanek and W. Raike: Extreme Point Solutions in Mathematical Programming: An Opposite Sign Algorithm. SRM No. 129, Northwestern University, June, 1965.Google Scholar
  30. Charnes, A., K. O. Kortanek and S. Thore: An Infinite Constrained Game Duality Characterizing Economic Equilibrium. Dept. Mathematics, Carnegie-Mellon University, Pittsburgh, PA 15213, March, 1981.Google Scholar
  31. Cheney, E. W.: Introduction to Approximation Theory. New York-St. Louis-San Francisco-Toronto-London-Sydney: McGraw-Hill, 1966.Google Scholar
  32. Chui, C. K. and J. D. Ward: Book Review of Optimization and Approximation by W. Krabs, J. Wiley and Sons, 1979. Bull. AMS 3 (1980), 1065–1069.Google Scholar
  33. Collatz, L. and W. Krabs: Approximationstheorie. Stuttgart: B. G. Teubner, 1973.MATHGoogle Scholar
  34. Collatz, L. and W. Wetterling: Optimierungsaufgaben, Zweite Auflage. Berlin-Heidelberg-New York: Springer-Verlag, 1971.Google Scholar
  35. Cromme, L.: Eine Klasse von Verfahren zur Ermittlung bester nicht-linearer Tscheby- scheff-Approximationen. Numer. Math. 25 (1976), 447–459.MathSciNetMATHCrossRefGoogle Scholar
  36. Cybenko, G.: Affine Minimax Problems and Semi-Infinite Programming. Dept. of Mathematics, Tufts University, Medford, MA 02155, 1981.Google Scholar
  37. Dahlquist, G. and A. Björck: Numerical Methods. Englewood Cliffs, New Jersey: Prentice-Hall, 1974.Google Scholar
  38. Dahlquist, G., S. Eisenstat and G. H. Golub: Bounds for the Error of Linear Systems of Equations Using the Theory of Moments. J. Math. Anal. Appl. 37 (1972), 151–166.MathSciNetMATHCrossRefGoogle Scholar
  39. Dahlquist, G., S.-A. Gustafson and K. Siklo’si: Convergence Acceleration from the Point of View of Linear Programming. BIT 1 (1965), 1–16.MathSciNetCrossRefGoogle Scholar
  40. Dantzig, G. B.: Linear Programming and Extensions. Princeton, New Jersey: Princeton University Press, 1963.Google Scholar
  41. DeVore, R.: One-Sided Approximation of Functions. J. Approx. Theory 1 (1968), 11–25.Google Scholar
  42. Dinkel, J. J., W. H. Elliot and Gary A. Kochenberger: Computational Aspects of Cutting-Plane Algorithms for Geometric Programming Problems. Mathematical Programming 13 (1977), 200–220.MathSciNetMATHCrossRefGoogle Scholar
  43. Duffin, R. J.: Infinite Programs. In: Linear Inequalities and Related Systems (edited by H. W. Kuhn and A. W. Tucker ). Princeton, New Jersey: Princeton University Press, 1965, 157–170.Google Scholar
  44. Duffin, R. J.: Convex Analysis Treated by Linear Programming. Math. Prog. 4 (1973), 125–143.MathSciNetMATHCrossRefGoogle Scholar
  45. Duffin, R. J., R. G. Jeroslow and L. A. Karlovitz: Duality in Semi-Infinite Linear Pro-gramming. To appear (1983).Google Scholar
  46. Duffin, R. J. and L. A. Karlovitz: An Infinite Linear Program with a Duality Gap. Man-agement Sci. 12 (1965), 122–134.MathSciNetGoogle Scholar
  47. Duffin, R. J., E. L. Peterson and C. Zener: Geometric Programming. New York: J. Wiley & Sons, 1967.MATHGoogle Scholar
  48. Eckhardt, U.: Theorems on the Dimension of Convex Sets. Linear Algebra and Its Applications 12 (1975), 63–76.MathSciNetMATHCrossRefGoogle Scholar
  49. Eckhardt, U.: Semi-Infinite Quadratic Programming. OR-Spek. 1 (1979), 51–55.MATHCrossRefGoogle Scholar
  50. Eckhardt, U.: Representations of Convex Sets. Extremal Methods and Systems Analysis (edited by A. V. Fiacco and K. O. Kortanek) 174. Berlin-Heidelberg-New York: Springer-Verlag, 1980, 374–383.Google Scholar
  51. Elzinga, J. and Th. G. Moore: A Central Cutting Plane Algorithm for the Convex Pro-gramming Problem. Math. Programming 8 (1975), 134–145.MathSciNetMATHCrossRefGoogle Scholar
  52. Evans, J. P.: Duality in Mathematical Programming Over Markov Chains and Countable Action Spaces in Finite Horizon Problems. Management Sci. 15 (1969), 626–638.MATHCrossRefGoogle Scholar
  53. Fahlander, K.: Computer Programs for Semi-Infinite Optimization. TRITA NA-7312, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-10044 Stockholm 70, Sweden.Google Scholar
  54. Fahlander, K., S.-Ä. Gustafson and L. E. Olsson: Computing Optimal Air Pollution Abatement Strategies - Some Numerical Experiments on Field Data. Proceedings of the Fifth Meeting of the NATO/CCMS Expert Panel on Air Pollution Modeling, 1974.Google Scholar
  55. Fan, K.: Convex Sets and Their Applications. Argonne National Laboratory, Summer, 1959.Google Scholar
  56. Fan, K.: Asymptotic Cones and Duality of Linear Relations. J. Appr. Theory 2 (1969), 152–159.MATHCrossRefGoogle Scholar
  57. Fedorov, V. V.: Theory of Optimal Experiments. New York: Academic Press, 1972.Google Scholar
  58. Fiacco, A. V. and G. P. McCormick: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. New York: John Wiley, 1968.MATHGoogle Scholar
  59. Flachs, J.: Saddle-Point Theorems for Rational Approximation. CSIR Technical Report, TWISK 219 (1981).Google Scholar
  60. Glashoff, K.: Duality Theory of Semi-Infinite Programming. Semi-Infinite Programming (edited by R. Hettich ). Berlin-Heidelberg-New York: Springer-Verlag, 1979.Google Scholar
  61. Glashoff, K. and S.-Å. Gustafson: Numerical Treatment of a Parabolic Boundary Value Control Problem. Opt. Th. Appl. 19 (1976), 645–663.MathSciNetMATHCrossRefGoogle Scholar
  62. Glashoff, K. and S.-Å. Gustafson: Einführung in die Lineare Optimierung. Darmstadt: Buchgesellschaft,1978.Google Scholar
  63. Glashoff, K. and S.-Å. Gustafson: Linear Optimization and Approximation. To appear Springer.Google Scholar
  64. Glashoff, K. and K. Roleff: A New Method for Chebyshev Approximation of Complex- Valued Functions. Math. Comp. 36 (1981), 233–239.MathSciNetMATHCrossRefGoogle Scholar
  65. Gochet, W. and Y. Smeers: On the Use of Linear Programs to Solve Prototype Geometric Programs. CORE Discussion Paper No. 7229, 1972.Google Scholar
  66. Gochet, W., Y. Smeers and K. O. Kortanek: On a Classification Scheme for Geometric Programming and Complementarity Theorems. Applicable Analysis 6 (1976), 47–59.MathSciNetMATHCrossRefGoogle Scholar
  67. Gonzaga, C. and E. Polak: On Constraint Dropping Schemes and Optimality Functions for a Class of Outer Approximation Algorithms. SIAM J. Contr. Opt. 17 (1979), 477–493.MathSciNetMATHCrossRefGoogle Scholar
  68. Gonzaga, C., E. Polak and R. Trahan: An Improved Algorithm for Optimization Problems with Functional Inequality Constraints. IEEE Trans. Autom. Contr. 25 (1980), 49–54.MathSciNetMATHCrossRefGoogle Scholar
  69. Gorr, W. L. and K. O. Kortanek: Numerical Aspects of Pollution Abatement Problems: Optimal Control Strategies for Air Quality Standards. Proceedings 10th Annual DGU Meetings, Bochum, 1971, 34–58.Google Scholar
  70. Gorr, W., S.-A. Gustafson and K. O. Kortanek: Optimal Control Strategies for Air Quality Standards and Regulatory Policies. Environment and Planning 4 (1972), 183–192.CrossRefGoogle Scholar
  71. Greenberg, H. J. and W. P. Pierskalla: Stability Theorems for Infinitely Constrained Mathematical Programs. J.O.T.A. 16 (1975), 409–428.MathSciNetMATHCrossRefGoogle Scholar
  72. Gribik, P. R.: A Central Cutting Plane Algorithm for Semi-Infinite Programming Problems. In: Semi-Infinite Programming (edited by R. Hettich ). Berlin-Heidelberg-New York: Springer-Verlag, 1979a, 66–82.CrossRefGoogle Scholar
  73. Gribik, P. R.: Selected Applications of Semi-Infinite Programming. Constructive Approaches to Mathematical Models (edited by C. V. Coffman and G. J. Fix ). New York: Academic Press, 1979b, 171–188.Google Scholar
  74. Gribik, P. R. and K. O. Kortanek: Equivalence Theorems and Cutting Plane Algorithms for a Class of Experimental Design Problems. SIAM J. Appl. Math. 32 (1977), 232– 259.Google Scholar
  75. Gribik, P. R. and D. N. Lee: A Comparison of Two Central Cutting Plane Algorithms for Prototype Geometric Programming Problems. Methods of Opns. Res. 31 (edited by W. Oettli and F. Steffens ), 1978, 275–287.Google Scholar
  76. Gustafson, S.-Å.: On the Computational Solution of a Class of Generalized Moment Problems. SIAM J. Numer. Anal. 7 (1970), 343–357.MathSciNetMATHCrossRefGoogle Scholar
  77. Gustafson, S.-Å.: Die Berechnung von verallgemeinerten Quadraturformeln vom Gaußschen Typus, eine Optimierungsaufgabe. In: Numerische Methoden bei Optimierungsaufgaben (edited by L. Collatz and W. Wetterling), ISNM 17. Basel: Birkhäuser, 1973 a, 59–71.Google Scholar
  78. Gustafson, S.-Å.: Nonlinear Systems in Semi-Infinite Programming. In: Numerical Solutions of Nonlinear Algebraic Systems (edited by G. B. Byrnes and C. A. Hall ). New York: Academic Press, 1973b, 63–99.Google Scholar
  79. Gustafson, S.-Å.: On Computational Applications of the Theory of the Moment Problem. Rocky Mountain J. on Math. 4 (1974), 227–240.MathSciNetMATHCrossRefGoogle Scholar
  80. Gustafson, S.-Å.: On the Numerical Treatment of a Multi-Dimensional Parabolic Boundary-Value Control Problem. In: Optimization and Optimal Control, Lecture Notes in Mathematics. 477 (edited by R. Bulirsch, W. Oettli and J. Stoer ). Berlin- Heidelberg-New York: Springer-Verlag, 1975.Google Scholar
  81. Gustafson, S.-Å.: Stability Aspects on the Numerical Treatment of Linear Semi-Infinite Programs. TRITA-NA-7604, Dept. of Numerical Analysis and Computing Science, Royal Institute of Technology, S-10044, Stockholm 70, Sweden.Google Scholar
  82. Gustafson, S.-Å.: On Numerical Analysis in Semi-Infinite Programming. In: Semi-Infinite Programming, Lecture Notes in Control and Information Sciences 15 (edited by R. Hettich ). Berlin-Heidelberg-New York: Springer-Verlag, 1979.Google Scholar
  83. Gustafson, S.-Å.: A Computational Scheme for Exponential Approximation. ZAMM 61 (1981), T284–T287.Google Scholar
  84. Gustafson, S.-Å.: A General Three-Phase Algorithm for Nonlinear Semi-Infinite Programming Problems. To appear, (1983).Google Scholar
  85. Gustafson, S.-Å. and K. O. Kortanek: Numerical Treatment of a Class of Semi-Infinite Programming Problems. NRLQ 20 (1973 a), 477–504.Google Scholar
  86. Gustafson, S.-Ä. and K. O. Kortanek: Numerical Solution of a Class of Convex Programs. Methods of Operations Research 16 (1973 b), 138–149.Google Scholar
  87. Gustafson, S.-Å. and K. O. Kortanek: Mathematical Models for Air Pollution Control: Numerical Determination of Optimizing Policies. In: Models for Environmental Pollution Control (edited by R. A. Deininger). Ann Arbor: Ann Arbor Science Publishers, Inc., 1973 c, 251–265.Google Scholar
  88. Gustafson, S.-Ä. and K. O. Kortanek: Mathematical Models for Optimizing Air Pollution Abatement Policies: Numerical Treatment. Proceedings of the Bilateral U.S.Czechoslovakia Environmental Protection Seminar, Pilsen, Czechoslovakia, 1973 d.Google Scholar
  89. Gustafson, S.-Å. and K. O. Kortanek: Determining Sampling Equipment Locations by Optimal Experimental Design with Applications to Environmental Protection and Acoustics. Proceedings of the 7th Symposium on the Interface, Iowa State University, Ames, Iowa, 1973 e.Google Scholar
  90. Gustafson, S.-Å., K. O. Kortanek, and Samuelsson, H. M.: On dual programs and finite dimensional moment cones. Series in Numerical Optimization and Pollution Abatement, No. 8, Carnegie-Mellon University, Pittsburgh PA 1974.Google Scholar
  91. Gustafson, S.-Å., K. O. Kortanek, and W. Rom: Non-Cebysevian Moment Problems. SIAM J. on Numer. Anal. 7 (1970), 335–342.MathSciNetMATHCrossRefGoogle Scholar
  92. Gutknecht, M.: Ein Abstiegsverfahren für nicht-diskrete Tschebyscheff-Approxima-tionsprobleme. In: Numer. Meth. der Approximationstheorie (edited by Collatz et al.) ISNM 42 (1978), 154–171.Google Scholar
  93. Hettich, R.: Kriterien zweiter Ordnung für lokal beste Approximation. Numer. Math. 22 (1974), 409 - 417.MathSciNetMATHCrossRefGoogle Scholar
  94. Hettich, R.: A Newton-Method for Nonlinear Chebyshev Approximation. Approx. Theory. Proc. Int. Colloqu. Bonn, Lecture Notes in Math. 556. Berlin-Heidelberg-New York: Springer-Verlag, 1976, 222–236.Google Scholar
  95. Hettich, R. (editor): Semi-Infinite Programming, Lecture Notes in Control and Information No. 15. Berlin-Heidelberg-New York: Springer-Verlag, 1979.Google Scholar
  96. Hettich, R. and H. Th. Jongen: On First and Second Order Conditions for Local Optima for Optimization Problems in Finite Dimensions. Methods of Oper. Res. 23 (1977), 82–97.MathSciNetGoogle Scholar
  97. Hettich, R. and H. Th. Jongen: Semi-Infinite Programming: Conditions of Optimality and Applications. In: Optimization Techniques 2 (edited by J. Stoer ). Berlin-Heidelberg-New York: Springer-Verlag, 1978, 1–11.CrossRefGoogle Scholar
  98. Hettich, R. and W. Van Honstede: On Quadratically Convergent Methods for Semi-In- finite Programming. In: Semi-Infinite Programming (edited by R. Hettich ). Berlin- Heidelberg-New York: Springer-Verlag, 1979, 97–111.CrossRefGoogle Scholar
  99. Hettich, R. and W. Wetterling: Nonlinear Chebyshev Approximation by H-Polynomials. J. Approx. Theory 7 (1973), 198–211.MathSciNetMATHCrossRefGoogle Scholar
  100. Hettich, R. and P. Zencke: Superlinear konvergente Verfahren für semi-infinite Optimierungsprobleme mit stark eindeutigen Fall. Universität Bonn, Preprint No. 354, SFB 72, (1980).Google Scholar
  101. Hettich, R. and P. Zencke: Numerische Methoden der Approximation und semi-infiniten Optimierung. Stuttgart: Teubner, 1982.MATHGoogle Scholar
  102. Hoffman, K. H. and A. Klostermaier: A Semi-Infinite Programming Procedure. In: Approximation Theory II (edited by Lorentz et al.). New York-San Francisco-London. McGraw-Hill, 1976, 379–389.Google Scholar
  103. Ioffe, A. D.: Second-Order Conditions in Nonlinear Nonsmooth Problems of Semi-In- finite Programming. To appear (1983).Google Scholar
  104. Jeroslow, R. G.: A Limiting Lagrangian for Infinitely-Constrained Convex Optimization in Rn. J.O.T.A. 33 (3) (1981).Google Scholar
  105. Jeroslow, R. G. and K. O. Kortanek: On Semi-Infinite Systems of Linear Inequalities. Israel J. Math. 10 (1971), 252–258.MathSciNetMATHGoogle Scholar
  106. John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. In: Studies and Essays, Courant Anniversary Volume. New York: Interscience, 1948, 187–204.Google Scholar
  107. Kallina, C. and A. C. Williams: Linear programming in reflexive spaces. SIAM Rev. (1971), 350–356.Google Scholar
  108. Karlin, S. and W. J. Studden: Tchebycheff Systems: With Applications in Analysis and Statistics. New York-London-Sydney: Interscience Publishers, 1966.MATHGoogle Scholar
  109. Karney, D. F.: Clark’s Theorem for Semi-Infinite Convex Programs. Advances in Appl. Math. 2 (1981b), 7–13.MathSciNetMATHGoogle Scholar
  110. Karney, D. F.: Duality Gaps in Semi-Infinite Linear Programming - An Approximation Problem. Math. Programming 20 (1981a), 129–143.MathSciNetMATHCrossRefGoogle Scholar
  111. Kelley, J. E., Jr.: The Cutting Plane Method for Solving Convex Programs. SIAM 8 (1960), 703–712.MathSciNetGoogle Scholar
  112. Kemperman, J. H. B.: On the Role of Duality in the Theory of Moments. To appear (1983).Google Scholar
  113. Kiefer, J.: Optimum Experimental Designs. J. Roy. Statist. Soc. Ser. B. 21 (1959), 272–304.MathSciNetGoogle Scholar
  114. Kiefer, J. and J. Wolfowitz: The Equivalence of Two Extremum Problems. Canadian J. Math. 12 (1960), 363–366.MathSciNetMATHGoogle Scholar
  115. Kortanek, K. O.: Classifying convex extremum problems over linear topologies having separation properties. J. Math. Anal. Appl. 46 (1974), 725–755.MathSciNetMATHCrossRefGoogle Scholar
  116. Kortanek, K. O.: Extended Abstract of Classifying Convex Extremum Problems. Zentralblatt für Mathematik 283 (1975), 491–496.Google Scholar
  117. Kortanek, K. O.: Perfect Duality in Generalized Linear Programming. In: Proc. 9th International Symp. Math. Prog, (edited by A. Prekopa ), Hungarian Acad. Sci., Budapest. Amsterdam: North-Holland, 1976, 43–58.Google Scholar
  118. Kortanek, K. O.: Constructing a Perfect Duality in Infinite Programming. Appl. Math. Opt. 3 (1977 a), 357–372.Google Scholar
  119. Kortanek, K. O.: Perfect Duality in Semi-Infinite and Generalized Convex Programming. In: Methods of Operations Research 25 (edited by A. Angermann, R. Kaerkes, K.-P. Kistner, K. Neumann, B. Rauhut, and F. Steffens). Meisenheim am Glan: Verlag Anton Hain, 1977 b, 79–87.Google Scholar
  120. Kortanek, K. O. and R. W. Pfouts: A Biextremal Principle for a Behavioral Theory of the Firm. J. Math. Modeling, 3 (1982), 573–590.MathSciNetMATHCrossRefGoogle Scholar
  121. Kortanek, K. O. and A. L. Soyster: On Equating the Difference Between Optimal and Marginal Values of General Convex Programs. J. Opt. Theory and Appl. 33 (1981), 57–68.MathSciNetMATHCrossRefGoogle Scholar
  122. Kortanek, K. O. and M. Yamasaki: Semi-Infinite Transportation Problems. J. Math. Anal. Appl. 88 (1982), 555–565.MathSciNetMATHCrossRefGoogle Scholar
  123. Krabs, W.: Optimierung und Approximation. Stuttgart: B. G. Teubner, 1975.MATHGoogle Scholar
  124. Lehman, R. and W. Oettli: The Theorem of the Alternative, the Key Theorem, and the Vector-Maximum Problem. Math. Prog. 8 (1975), 332–344.MATHCrossRefGoogle Scholar
  125. Levinson, N.: A Class of Continuous Linear Programming Problems. J. Math. Anal. Appl. 16 (1966), 73–83.Google Scholar
  126. Lindberg, P. O.: Fenchel duality from LP duality, Optimization. Math. OP & Stat. (Ilmenau) 11 (1980), 171–180.MathSciNetMATHGoogle Scholar
  127. Luenberger, D. G.: Optimization by Vector Space Methods. New York: John Wiley, 1969.Google Scholar
  128. Negoita, C. V. and M. Sularia: On Fuzzy Mathematical Programming and Tolerances in Planning. Institute of Management and Informatics, Bucharest, Economic Computation and Economic Cybernetics Studies and Research, 1976.Google Scholar
  129. Osborne, M. R. and G. A. Watson: An Algorithm for Minimax Approximation in the Nonlinear Case. Computer J. 12 (1969), 63–68.MathSciNetMATHGoogle Scholar
  130. Parks, M. L. and A. L. Soyster: Semi-Infinite Programming and Fuzzy Set Programming, to appear (1983).Google Scholar
  131. Perold, A. F.: Fundamentals of a Continuous Time Simplex Method. Technical Report SOL 78-26, Dept. Opns. Res., Stanford University, Stanford, CA 94305.Google Scholar
  132. Perold, A. F.: Extreme Points and Basic Feasible Solutions in Continuous Time Linear Programming. SIAM J. Contr. Opt. 19 (1981), 52–63.MathSciNetMATHCrossRefGoogle Scholar
  133. Pomerol, J. Ch.: About a minimax theorem of Matthies, Strang and Christiansen, Math. Prog. 19 (1980), 352–355.MathSciNetMATHCrossRefGoogle Scholar
  134. Pukelsheim, F.: On Linear Regression Designs Which Maximize Information. J. Stat. Planning and Inference 4 (1980), 339–364.MathSciNetMATHCrossRefGoogle Scholar
  135. Rockafellar, R. T.: Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.Google Scholar
  136. Samuelsson, H. M.: A Note on the Duality Interpretation of an Air Pollution Abatement Model. Series in Numerical Optimization and Pollution Abatement, School of Urban and Public Affairs, Carnegie-Mellon University, Pittsburgh, PA, 1972.Google Scholar
  137. Sibson, R.: Cutting-Plane Algorithms for D-Optimal Design. Dept. of Statistics, University of Cambridge, Cambridge, England, 1973.Google Scholar
  138. Silvey, S. D.: Optimal Design. London: Chapman & Hall, 1980.MATHGoogle Scholar
  139. Silvey, S. D. and D. M. Titterington: A Geometic Approach to Optimal Design Theory. Biometrika 60 (1973), 21–32.MathSciNetMATHCrossRefGoogle Scholar
  140. Soyster, A. L.: Convex Programming with Set Inclusive Constraints and Applications to Inexact Linear Programming. Operations Research 21 (1973), 1154–1157.MathSciNetMATHCrossRefGoogle Scholar
  141. Soyster, A. L.: A Semi-Infinite Game. Mgt. Sci. 21 (1975), 806–812.MathSciNetMATHCrossRefGoogle Scholar
  142. Soyster, A. L.: Inexact Linear Programming with Generalized Resource Sets. European J. of Opnl. Res. 3 (1979), 316–321.MathSciNetMATHCrossRefGoogle Scholar
  143. Stoer, J.: Einführung in die Numerische Mathematik 2. Auflage. Berlin-Heidelberg- New York: Springer-Verlag, 1976.MATHGoogle Scholar
  144. Streit, R. L. and A. H. Nuttall: Linear Chebyshev Complex Function Approximation. Naval Underwater Systems Center, Newport, Rhode Island, USA (1981).Google Scholar
  145. Tijs, S. H.: Semi-Infinite Linear Programs and Semi-Infinite Matrix Games. Nieuw Archif voor Wiskunde 27 (1979), 197–214.MathSciNetMATHGoogle Scholar
  146. Titterington, D. M.: Geometric Approaches to Design of Experiment. Math. Operations-forsch. Statist. Ser. Statist. 11 (1980), 151–163.MathSciNetMATHGoogle Scholar
  147. Topkis, D. M.: A Cutting Plane Algorithm with Linear and Geometric Rates of Conver-gence. J.O.T.A. 36 (1982), 1–22.MathSciNetCrossRefGoogle Scholar
  148. Tröltzsch, F.: Duality Theorems for a Class of Continuous Linear Programming Problems in a Space of Bochner-Integrable Abstract Functions. Math. Operationsforsch. Statist. Ser. Opt. 11 (1980), 375–388.MATHCrossRefGoogle Scholar
  149. Tsay, J.-Y.: The Iterative Methods for Calculating Optimal Experimental Designs. Ph. D. Thesis, Purdue University, Lafayette, Indiana, 1974.Google Scholar
  150. Van Honstede, W.: An Approximation Method for Semi-Infinite Problems. In: Semi-In- finite Programming (edited by R. Hettich ). Berlin-Heidelberg-New York: Springer- Verlag, 1979, 126–136.CrossRefGoogle Scholar
  151. Veidinger, L.: On the Numerical Determination of the Best Approximation in the Chebyshev Sense. Numer. Math. 2 (1960), 99–105.MathSciNetMATHCrossRefGoogle Scholar
  152. Watson, G. A.: The Calculation of Best One-Sided Lp-Approximations. Math. Comp. 27 (1973 a), 607–620.Google Scholar
  153. Watson, G. A.: One-Sided Approximation and Operator Equations. J. Inst. Maths. Applic. 12 (1973 b), 197–208.Google Scholar
  154. Watson, G. A.: On the Best Linear One-Sided Chebyshev Approximation. J. Approx. Theory 7 (1973 c), 48–58.Google Scholar
  155. Watson, G. A.: Globally Convergent Methods for Semi-Infinite Programming. Dept. of Mathematics, University of Dundee (1981 a).Google Scholar
  156. Watson, G. A.: Numerical Experiments with Globally Convergent Methods for Semi-In- finite Programming Problems. Dept. of Mathematics, University of Dundee (1981b).Google Scholar
  157. Wetterling, W.: Anwendung des Newtonschen Iterations Verfahrens bei der Tscheby- scheff-Approximation, insbesondere mit nichtlinear auftretenden Parametern. MTW Teil I: 61–63, Teil II: 112–115 (1963).Google Scholar
  158. Whittle, P.: Some General Points in the Theory of Optimal Experimental Design. J. Roy. Statist. Soc. Ser. B. 35 (1973), 123–130.MathSciNetMATHGoogle Scholar
  159. Wynn, H. P.: The Sequential Generation on D-Optimal Designs. Ann. Math. Statist. 41 (1970), 1655–1664.MathSciNetMATHCrossRefGoogle Scholar
  160. Wynn, H. P.: Results in the Theory and Construction of D-Optimal Experimental Designs (with Discussions). J. Roy. Statist. Soc. Ser. B. 34 (1972), 133–147.MathSciNetMATHGoogle Scholar
  161. Yamasaki, M.: Semi-Infinite Programs and Conditional Gauss Variational Problems. Hiroshima Math. J. 1 (1971), 177-226 and Corrections 2 (1972), 547. Yamasaki, M.: Duality Theorems in Mathematical Programming and Their Applications. J. Sci. Hiroshima Univ. 30 (1968), 331–356.MathSciNetGoogle Scholar
  162. Zariski, O. and P. Samuel: Commutative Algebra. New York: D. Van Nostrand Co., 1950.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • S.-Å. Gustafson
    • 1
  • K. O. Kortanek
    • 2
  1. 1.Department of Numerical Analysis and Computing ScienceRoyal Institute of TechnologyStockholm 70Sweden
  2. 2.Department of MathematicsCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations