Skip to main content
Book cover

Glucagon I pp 245–261Cite as

Radioreceptorassays for Glucagon

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 66 / 1))

Abstract

The interaction of glucagon with its receptor on the plasma membranes of liver cells has been the subject of intensive research (see Chap. 13), and it has been established that the initial step in the effect of glucagon on liver function is specific binding of glucagon to the outside of liver cell membranes. The work of Rodbell et al. (1971) showed that glucagon associated highly specifically with its receptor in a reversible manner, with an equilibrium constant for dissociation of approximately 4 X 10-9 M. Furthermore, it was found that very small changes in the structure of the glucagon molecule interfered markedly with its ability to activate the adenylate cyclase associated with the receptor on cell membranes. It was therefore conceivable, that a radioreceptorassay for glucagon, i.e., an assay based on the principles of competitive protein binding assays like radioimmunoassays, but utilizing the glucagon receptors as the binding reagent, might throw some light on the many specificity problems associated with the radioimmunologic determination of glucagon in biologic fluids (Holst 1978 b). Not only are substances with glucagon-like immunoreactivity produced in many tissues outside the pancreatic A-cells (Holst 1978 b), but also plasma contains peptides with glucagon-like immunoreactivity, which are not derived from the pancreas or differ in size from the originally isolated molecule (see Chap. 11). If any of these substances were capable of binding to the glucagon receptor and possibly activating adenylate cyclase, the radioreceptorassay might more accurately predict the total glucagon-like bioactivity in a given sample, and therefore be a more interesting biologic parameter than even the most restrictive and “specific” radioimmunoassay.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assan R, Slusher N (1972) Structure/function and structure/immunoreactivity relationships of the glucagon molecule and related synthetic peptides. Diabetes 21: 843–855

    PubMed  CAS  Google Scholar 

  • Bataille DP, Freychet P, Kitabgi PE, Rosselin GE (1973) Gut glucagon: a common receptor site with pancreatic glucagon in liver cell plasma membranes. FEBS Lett 30: 215–218

    Article  PubMed  CAS  Google Scholar 

  • Bataille D, Freychet P, Rosselin G (1974) Interactions of glucagon, gut glucagon, vasoactive intestinal polypeptide and secretin with liver and fat cell plasma membranes: binding to specific sites and stimulation of adenylate cyclase. Endocrinology 95: 713–721

    Article  PubMed  CAS  Google Scholar 

  • Baxter JD, Funder JW (1979) Hormone receptors. N Engl J Med 301: 1149–1161

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L, Pohl SL (1973) Relation of glucagon-specific binding sites to glucagon-de- pendent stimulation of adenylyl cyclase activity in plasma membranes of rat liver. J Biol Chem 248: 2056–2061

    PubMed  CAS  Google Scholar 

  • Blecher M, Goldstein S (1977) Hormone receptors. VI. On the nature of the binding of glucagon and insulin to human circulating mononuclear leukocytes. Mol Cell Endocrinol 8: 301–315

    Article  PubMed  CAS  Google Scholar 

  • Bregman MD, Hruby VJ (1979) Synthesis and isolation of a glucagon antagonist. FEBS Lett 101: 191–194

    Article  PubMed  CAS  Google Scholar 

  • Bromer WW, Boucher ME, Patterson JM (1973) Glucagon structure and function. II. Increased activity of iodoglucagon. Biochem Biophys Res Commun 53: 134–139

    Article  PubMed  CAS  Google Scholar 

  • Byus CV, Hayes JS, Brendel K, Russell DH (1976) Correlation between cAMP, activation of cAMP-dependent protein kinase(s) and rate of glycogenolysis in isolated rat hepatocytes. Life Sci 19: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Cuatrecasas P, Hollenberg MD (1975) Binding of insulin and other hormones to non-receptor materials: saturability, specificity and apparent “negative cooperativity”. Biochem Biophys Res Commun 62: 31–41

    Article  PubMed  CAS  Google Scholar 

  • Desbuquois B (1975 a) Acetylglucagon: preparation and characterization. Eur J Biochem 60:335–347

    Article  CAS  Google Scholar 

  • Desbuquois B (1975 b) Iodoglucagon: preparation and characterization. Eur J Biochem 53:569–580

    Article  PubMed  CAS  Google Scholar 

  • Desbuquois B, Laudat M-H (1974) Glucagon-receptor interactions in fat cell membranes. Mol Cell Endocrinol 1: 355–370

    Article  PubMed  CAS  Google Scholar 

  • Desbuquois B, Krug F, Cuatrecasas P (1974) Inhibitors of glucagon inactivation. Effect on glucagon-receptor interactions and glucagon-stimulated adenylate cyclase activity in liver cell membranes. Biochim Biophys Acta 343: 101–120

    Article  PubMed  CAS  Google Scholar 

  • Epand RM, Cote TE (1976) Conformational and biological properties of a covalently linked dimer of glucagon. Biochim Biophys Acta 453: 365–373

    PubMed  CAS  Google Scholar 

  • Epand RM, Epand RF (1972) Carboxyl group modification in glucagon. Biochim Biophys Acta 285: 176–180

    PubMed  CAS  Google Scholar 

  • Epand RM, Grey V (1973) Conformational and biological properties of partial sequences of glucagon. Can J Physiol Pharmacol 51: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Epand RM, Wheeler GE (1975) The effects of the trinitrophenylation of the amino groups of glucagon on its conformational properties and on its ability to activate rat liver adenylyl cyclase. Biochim Biophys Acta 393: 236–246

    PubMed  CAS  Google Scholar 

  • Epand RM, Epand RF, Grey V (1973) The essential role of the imidazole group of glucagon in its biological function. Arch Biochem Biophys 154: 132–136

    Article  PubMed  CAS  Google Scholar 

  • Frandsen EK (1979) The function of guanyl nucleotides in the glucagon mediated activation of hepatic adenylate cyclase. In: Rosselin G, Fromageot P, Bonfils S (eds) Hormone receptors in digestion and nutrition. Elsevier/North Holland Amsterdam Oxford New York, pp 313–318

    Google Scholar 

  • Frandsen EK, Gronvald FC, Heding LG, Johansen NL, Lundt BF, Moody AJ, Markussen J, Volund A (1981) Glucagon: structure-function relationships investigated by sequence deletions. Hoppe Seylers Z Physical Chem 362: 665–678

    Article  CAS  Google Scholar 

  • Freychet P (1976) Interactions of polypeptide hormones with cell membrane specific receptors: studies with insulin and glucagon. Diabetologia 12: 83–100

    Article  PubMed  CAS  Google Scholar 

  • Freychet P, Brandenburg D, Wollmer A ( 1974 a) Receptor-binding assay of chemically modified insulins. Comparison with in vitro and in vivo bioassays. Diabetologia 10: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Freychet P, Rosselin G, Rancon F, Fouchereau M, Broer Y ( 1974 b) Interactions of insulin and glucagon with isolated rat liver cells. I. Binding of the hormone to specific receptors. Horm Metab Res [Suppl] 5: 72–78

    Google Scholar 

  • Gliemann J, Gammeltoft S (1974) The biological activity and the binding affinity of modified insulins determined on isolated rat fat cells. Diabetologia 10: 105–114

    Article  PubMed  CAS  Google Scholar 

  • Goldfine ID, Roth J, Birnbaumer L (1972) Glucagon receptors in β-cells. Binding of 125I glucagon and activation of adenylate cyclase. J Biol Chem 247: 1211–1218

    PubMed  CAS  Google Scholar 

  • Goldstein S, Blecher M, Binder R, Perrino PV, Recant L (1975) Hormone receptors 5. Binding of glucagon and insulin to human circulating mononuclear cells in diabetes mellitus. Endocrinol Res Commun 2: 367–376

    Article  CAS  Google Scholar 

  • Gorden Ph, Carpentier J-L, Freychet P, Orci L (1980) Internalization of polypeptide hormones. Mechanism, intracellular localization and significance. Diabetologia 18: 263–274

    Article  PubMed  CAS  Google Scholar 

  • Grande F, Grisolia S, Diederich D (1972) On the biological and chemical reactivity of car- bamylated glucagon. Proc Soc Exp Biol 139: 855–860

    PubMed  CAS  Google Scholar 

  • Heber D, Odell WD, Schedewie H, Wolfsen AR (1978) Improved iodination of peptides for radioimmunoassay and membrane radioreceptor assay. Clin Chem 24: 796–799

    PubMed  CAS  Google Scholar 

  • Holst J J (1975) A radioreceptor-assay for glucagon: binding of enteroglucagon to liver plas-ma membranes. Diabetologia 11: 211–219

    Article  PubMed  CAS  Google Scholar 

  • Holst J J ( 1977 a) Interactions of hepatocyte membrane receptors with pancreatic and gut glucagon. In: Foa PP, Bajaj JS, Foa NL (eds) Glucagon: its role in physiology and clinical medicine. Springer, Berlin Heidelberg New York, pp 287–303

    Google Scholar 

  • Holst J J (1977 b) Extraction, gel filtration pattern and receptor binding of porcine gastrointestinal glucagon-like immunoreactivity. Diabetologia 13:159–169

    Article  PubMed  CAS  Google Scholar 

  • Holst JJ ( 1978 a) Physiology of enteric glucagon-like substances. In: Bloom SR (ed) Gut hormones 1 st ed. Churchill Livingstone, Edinburgh London, pp 383–386

    Google Scholar 

  • Hoist JJ (1978b) Extrapancreatic glucagons. Digestion 17: 168–190

    Article  Google Scholar 

  • Holst J J (1980) Evidence that glicentin contains the entire sequence of glucagon. Biochem J 187: 337–343

    PubMed  CAS  Google Scholar 

  • Holst JJ (1981) Pattern of glucagon release. In: Bloom SR, Polak J (eds) Gut hormones 2nd edn. Churchill Livingstone, Edinburgh London, pp 325–331

    Google Scholar 

  • Holst J J (1982) Evidence that enteroglucagon(II) is identical with the C-terminal sequence (residues 33–69) of glicentin. Biochem J 207: 381–388

    PubMed  CAS  Google Scholar 

  • Holst J J (1982) Molecular heterogeneity of glucagon produced and secreted by gluca-gonomas. Diabetologia, in press

    Google Scholar 

  • Jarett L, Reuter M, McKeel DW, Smith RM (1971) Loss of adenyl cyclase hormone receptors during purification of fat cell plasma membranes. Endocrinology 89: 1186–1190

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen KH, Larsen UD (1972) Purification of 125I-glucagon by anion exchange chromatography. Horm Metab Res 4: 223–224

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Cheng PY, Toda G, Oka H, Oda T, Yanaihara N, Yanaihara C, Mihara S, Nishida T, Kaise N, Shin S, Imagawa K (1979) Biological and binding activities of synthetic possible C-terminal fragments of glicentin in rat liver plasma membranes. In: Miyoshi A (ed) Gut peptides. Kodansha, Tokyo, pp 157–161

    Google Scholar 

  • Lande S, Gorman R, Bitensky M (1972) Selectively blocked and deshistidine-glucagons: preparation and effects on hepatic adenylate cyclase activity. Endocrinology 90: 597–604

    Article  PubMed  CAS  Google Scholar 

  • Lesko L, Donlon M, Marinetti GV, Hare JD (1973) A rapid method for the isolation of rat liver plasma membranes using an aqueous two-phase polymer system. Biochim Biophys Acta 311: 173–179

    Article  PubMed  CAS  Google Scholar 

  • Levey GS, Fletcher MA, Klein I (1975) Glucagon and adenylate cyclase: binding studies and requirements for activation. Adv Cyclic Nucleotide Res 5: 53–65

    PubMed  CAS  Google Scholar 

  • Levitzki A, Helmreich JM (1979) Hormone receptor-adenylate cyclase interactions. FEBS Lett 101: 213–219

    Article  PubMed  CAS  Google Scholar 

  • Lin MC, Wright DE, Hruby VJ, Rodbell M (1975) Structure-function relationships in glucagon: properties of highly purified deshis1-, monoiodo, and [Des-Asn28, Thr29] (homoserine lactone27)-glucagon. Biochemistry 14: 1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Lin MC, Nicosia S, Lad PM, Rodbell M (1977) Effects of GTP on binding of [3H] glucagon to receptors in rat hepatic plasma membranes. J Biol Chem 252: 2790–2792

    PubMed  CAS  Google Scholar 

  • Livingston JN, Cuatrecasas P, Lockwood DH (1974) Studies on glucagon resistance in large rat adipocytes: 125-I-labelled glucagon binding and lipolytic capacity. J Lipid Res 15: 26–32

    PubMed  CAS  Google Scholar 

  • Makman MH, Makman RS, Sutherland EW (1958) Presence of a glucagon-like material in blood of man and dog. J Biol Chem 233: 894–899

    PubMed  CAS  Google Scholar 

  • Moody A J, Hoist J J, Thim L, Jensen SL (1981) Relationship of glicentin to proglucagon and glucagon in the porcine pancreas. Nature 289: 514–516

    Article  PubMed  CAS  Google Scholar 

  • Murphy RF, Buchanan KD, Elmore DT (1973) Isolation of glucagon-like immunoreactivity of gut by affinity chromatography on anti-glucagon antibodies coupled to Se- pharose 4B. Biochim Biophys Acta 333: 118–127

    Google Scholar 

  • Neville DM (1960) The isolation of a cell membrane fraction from rat liver. J Biophys Biochem Cytol 8: 413–422

    Article  PubMed  Google Scholar 

  • Neville DM (1968) Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta 154: 540–552

    PubMed  CAS  Google Scholar 

  • Nottey J J, Rosselin G (1971) Monoiodoglucagon: preparation, isolement, identification, controle radio-immunologique. C R Acad Sci [D] (Paris) 273: 2118–2121

    CAS  Google Scholar 

  • O’Connor KJ, Lazarus NR (1976) The purification and biological properties of pancreatic big glucagon. Biochem J 156: 265–277

    PubMed  Google Scholar 

  • Patterson JM, Bromer WW (1973) Glucagon structure and function. Preparation and characterization of nitroglucagon and aminoglucagon. J Biol Chem 248: 8337–8342

    PubMed  CAS  Google Scholar 

  • Pohl SL (1977) The glucagon receptor and its relationship to adenylate cyclase. Fed Proc 36: 2115–2118

    PubMed  CAS  Google Scholar 

  • Pohl SL, Chase LR (1972) A radioreceptor assay for glucagon using purified plasma membranes from rat liver. Excerpta Medica, Int Congr Ser 256: 201

    Google Scholar 

  • Rancon F, Laburthe M, Rosselin G, Freychet P (1974) Untractable hypoglycemia in an infant: studies on pancreas insulin and glucagon. Horm Metab Res 6: 443–447

    Article  PubMed  CAS  Google Scholar 

  • Ray RK (1970) A modified method for the isolation of the plasma membrane from rat liver. Biochim Biophys Acta 196: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Rehfeld JF (1980) NH2-terminal monoiodination of hexadecapeptide gastrin: a simple procedure for preparation of 125-I-gastrin for radioimmunoassays and receptor studies. Clin Chim Acta 101: 271–275

    Article  PubMed  CAS  Google Scholar 

  • Rehfeld JF, Heding LG, Hoist J J (1973) Increased gut glucagon release as pathogenic factor in reactive hypoglycaemia? Lancet 1: 116–118

    Article  PubMed  CAS  Google Scholar 

  • Rigopoulou D, Valverde I, Marco J, Faloona G, Unger RH (1970) Large glucagon immunoreactivity in extracts of pancreas. J Biol Chem 245: 496–501

    PubMed  CAS  Google Scholar 

  • Rodbell M, Krans MJ, Pohl SL, Birnbaumer L (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. III. Binding of glucagon: method of assay and specificity. J Biol Chem 246: 1861–1871

    PubMed  CAS  Google Scholar 

  • Rosselin G, Freychet P, Bataille D, Kitabgi P ( 1974 a) Polypeptide hormone-receptor interactions. A new approach to the study of pancreatic and gut glucagons. Isr J Med Sci 10: 1314–1323

    PubMed  CAS  Google Scholar 

  • Rosselin G, Freychet P, Fouchereau M, Rancon F, Broer Y ( 1974 b) Interactions of insulin and glucagon with isolated rat liver cells. II. Dynamic changes in the cyclic AMP induced by hormones. Horm Metab Res [Suppl] 5: 78–86

    CAS  Google Scholar 

  • Roth J (1975 b) Methods for assessing immunological and biological properties of iodinated peptide hormones. Methods Enzymol 37:223–232

    Article  PubMed  Google Scholar 

  • Sokal JE (1972) Bioassays for glucagon. In: Lefebvre PJ, Unger RH (eds) Glucagon. Molecular physiology, clinical and therapeutic implications. Pergamon, Oxford New York, pp 275–284

    Google Scholar 

  • Sonne O, Gliemann J (1977) Receptor binding of glucagon and adenosine 3’: 5’-monophos-phate accumulation in isolated rat fat cells. Biochim Biophys Acta 499: 259–272

    Article  PubMed  CAS  Google Scholar 

  • Sonne O, Larsen UD (1980) Decreased receptor binding affinity of mono-125-I-glucagon when Met27 is oxidized during iodination. Acta Physiol Scand 109:15 A

    Article  Google Scholar 

  • Sonne O, Berg T, Christoffersen T (1978) Binding of 125-I-labelled glucagon and glucagon- stimulated accumulation of adenosine 3’: 5’-monophosphate in isolated intact rat he- patocytes. J Biol Chem 253: 3203–3210

    PubMed  CAS  Google Scholar 

  • Thieden HID, Hoist JJ, Dich J, Moody AJ, Sundby F (1981) Effect of highly purified porcine gut glucagon-like immunoreactivity (Glicentin) on glucose release from isolated rat hepatocytes. Biochim Biophys Acta 675:85

    Article  Google Scholar 

  • Thim L, Moody AJ (1981) The primary structure of porcine glicentin (proglucagon). Regul Peptides 2: 139–150

    Article  CAS  Google Scholar 

  • Von Schenck H, Larsson I, Thorell JI (1976) Improved radioiodination of glucagon with the lactoperoxidase method. Influence of pH on iodine substitution. Clin Chim Acta 69: 225–232

    Article  Google Scholar 

  • Wheeler GE, Epand RM, Barrett D (1974) Nonfequivalence of the carboxyl groups of glucagon in the carbodiimide-promoted reaction with nucleophiles and the role of carboxyl groups in the ability of glucagon to stimulate adenyl cyclase of rat liver. Biochim Biophys Acta 372: 440–449

    Article  CAS  Google Scholar 

  • Wright DE, Hruby VJ, Rodbell M (1978) A reassessment of structure-function relationships in glucagon. J Biol Chem 253: 6338–6340

    PubMed  CAS  Google Scholar 

  • Wright DE, Hruby VJ, Rodbell M (1980) Preparation and properties of glucagon analogues prepared by semi-synthesis from CNBr-glucagon. Biochim Biophys Acta 631: 49–58

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holst, J.J. (1983). Radioreceptorassays for Glucagon. In: Lefèbvre, P.J. (eds) Glucagon I. Handbook of Experimental Pharmacology, vol 66 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68866-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68866-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68868-3

  • Online ISBN: 978-3-642-68866-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics