Skip to main content

Transkription

  • Chapter
Genetik
  • 168 Accesses

Zusammenfassung

Das genetische Material einer Zelle hat die Hauptaufgabe, die Synthese von Proteinen zu steuern. Das Genom enthält die gesamte Information für Struktur und Funktion eines Organismus; aber nicht alle Gene sind zur gleichen Zeit aktiv. Die Regulation der Genaktivität wird in einem späteren Kapitel besprochen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

ÜBersichtsartikel Zu Kapitel

  • Krämer G (1981) Warum sind eukaryontische Gene anders? Biol unserer Zeit 11:169–173

    Article  Google Scholar 

  • Puschendorf B (1974) Biogenese der Messenger-RNA in Säugerzellen. Biol unserer Zeit 4:139–145

    Article  Google Scholar 

  • Thien W (1980) Die Ribonukleinsäure der Ribosomen. Biol unserer Zeit 10:97–103

    Article  CAS  Google Scholar 

Literatur; Allgemein

  • Adhya S, Gottesman (1978) Control of transcription termination. Annu Rev Biochem 47:217–249

    Article  Google Scholar 

  • Biswas BB, Mandal RK, Stevens A, Cohn WE (eds) (1974) Control of transcription. Plenum, New York

    Google Scholar 

  • Brenner S, Jacob F, Meselson M (1961) An unstable intermediatecarrying Information from genes to ribosomes for protein synthesis. Nature 190:576–581

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin MJ (1974) The selectivity of transcription. Annu Rev Biochem 43:721–775

    Article  PubMed  CAS  Google Scholar 

  • Chambon P (1977) Summary: The molecular biology of the eukaryotic genome is coming of age. Cold Spring Harbor Symp Quant Biol 42:1209–1234

    Google Scholar 

  • Cold Spring Harbor Symposium for Quantitative Biology (1970) Transcription of genetic material, vol 35. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • DarneU JE (1968) Ribonucleic acids from animal cells. Bacteriol Rev 32:262–290

    Google Scholar 

  • Darnell JE (1977) Gene regulation in mammalian cells: Some Problems and the prospects for their Solution. In: Saunders G (ed) Cell differentiation and neoplasia, 30th Annual Symposium on Fundamental Cancer Research. M.D. Anderson Hospital and Tumor Institute, Houston, TA

    Google Scholar 

  • Davidson EH, Britten R (1973) Organization, transcription, and regulation in the animal genome. Q Rev Biol 48:565–613

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1976) Starting and stopping sequences for the RNA Polymerase. In: Losick R, Chamberlin M (eds) RNA Polymerase. Cold Spring Harbor Laboratory, New York, pp 193–206

    Google Scholar 

  • Losick R (1972) In vitro transcription. Annu Rev Biochem 41:409–446

    Article  PubMed  CAS  Google Scholar 

  • Marmur J, Greenspan CM, Palecek E, Kahan FM, Levine J, Mandel M (1963) Specificity of the complementary RNA formed by Bacillus subtilis infected with bacteriophage SP8. Cold Spring Harbor Symp Quant Biol 28:191–199

    CAS  Google Scholar 

  • Perry RP (1976) Processing of RNA. Annu Rev Biochem 45:605–629

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Brownlee GG, Barrell BG (1965) A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol 13: 373–398

    Article  PubMed  CAS  Google Scholar 

  • Schweizer E, MacKechnie C, Halvorson HO (1969) The redundancy of ribosomal and transfer RNA genes in Saccharomyces cerevisiae. J Mol Biol 40:261–277

    Article  PubMed  CAS  Google Scholar 

  • Sirlin JL (1972) The biology of RNA. Academic Press, New York

    Google Scholar 

  • Stewart PR, Letham DS (eds) (1977) The ribonucleic acids, 2nd edn. Springer, New York

    Google Scholar 

  • Travers A (1974) Bacterial transcription. In: Burton K (ed) Biochemistry of nucleic acids. Butterworths, London (MTP international review of science, vol 6, pp 191 -218)

    Google Scholar 

  • Weinberg RA (1973) Nuclear RNA metabolism. Annu Rev Biochem 42:329–354

    Article  PubMed  CAS  Google Scholar 

  • Weissbach H, Pestka S (eds) (1977) Molecular mechanisms of protein biosynthesis. Academic Press, New York

    Google Scholar 

Literatur; RNA-Polymerase

Literatur;Messenger-RNA

  • Berget SM, Berk AJ, Harrison T, Sharp PA (1977) Spliced Segments at the 5’ termini of adenovirus-2-late mRNA: A role for heterogeneous nuclear RNA in mammalian cells. Cold Spring Harbor Symp Quant Biol 42:523–529

    Google Scholar 

  • Bonner J, Wallace RB, Sargent TD, Murphy RF, Dube SK (1977)The expressed portion of eukaryotic chromatin. Cold Spring Harbor Symp Quant Biol 42:851–857

    Google Scholar 

  • Both GW, Banergee AK, Shatkin AJ (1975) Methylation-dependent translation of viral messenger RNAs in vitro. Proc Natl Acad Sci USA 72:1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Brawerman G (1974) Eukaryotic messenger RNA. Annu Rev Biochem 43:621–642

    Article  PubMed  CAS  Google Scholar 

  • Brawerman G (1976) Characteristics and significance of the polyadenylate sequence in mammalian messenger RNA. Prog Nucl Acid Res Mol Biol 17:117–148

    Article  CAS  Google Scholar 

  • Breathnach R, Mandel JL, Chambon P (1977) Ovalbumin gene is split in chicken DNA. Nature 270:314–318

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Brownlee GG, Carey NH, Doel MT, Gillam S, Smith M (1976) The 3’-terminal sequence of chicken ovalbumin messenger RNA and its comparison with other messenger RNA molecules. J Mol Biol 107:527–547

    Article  Google Scholar 

  • Darnell JE (1978) Implications of RNA.RNA splicing in evolution of eukaryotic cells. Science 202:1257–1260

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE, Evans R, Fraser N, Goldberg S, Nevens J, Salditt-Georgieff M, Schwartz H, Weber J, Ziff E (1977) The definition of transcription units for mRNA. Cold Spring Harbor Symp Quant Biol 42:515–522

    Google Scholar 

  • Darneil JE, Wall R, Tushinski RJ (1971) An adenylic acid-rich sequence in messenger RNA of HeLa cells and its possible relationship to reiterated sites in DNA. Proc Natl Acad Sci USA 68: 1321–1325

    Article  Google Scholar 

  • Edmonds M, Vaughan MH, Nakazoto H (1971) Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly labelled polyribosomal RNA of HeLa cells: Possible evidence for a precursor relationship. Proc Natl Acad Sci USA 68:1336–1340

    Article  PubMed  CAS  Google Scholar 

  • Edmonds M, Winters MA (1976) Polyadenylate polymerases. Prog Nucleic Acid Res Mol Biol 17:149–179

    Article  PubMed  CAS  Google Scholar 

  • Furuichi Y, Morgan M, Muthukrishnan S, Shatkin AJ (1975) Reovirus messenger RNA contains a methylated, blocked 5’-terminal structure: m7G(5’)-ppp(5’)GmpCp. Proc Natl Acad Sci USA 72: 362–366

    Article  PubMed  CAS  Google Scholar 

  • Furuichi Y, Morgan M, Shatkin AJ, Helenik W, Salditt-Georgieff M, Darnell JE (1975) Methylated, blocked 5’ termini in HeLa cell mRNA. Proc Natl Acad Sci USA 72:1904–1908

    Article  PubMed  CAS  Google Scholar 

  • Geiduschek EP, Haselkorn R (1969) Messenger RNA. Annu Rev Biochem 38:647–676

    Article  PubMed  CAS  Google Scholar 

  • Goodman HM, Olson MV, Hall BD (1977) Nucleotide sequence of mutant eukaryotic gene: The yeast tyrosine-inserting ochre suppressor SUP4-0. Proc Natl Acad Sci USA 74:5453–5457

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Flavell RA (1977) The rabbit beta-globin gene contains a large insert in the coding sequence. Cell 12:1097–1108

    Article  PubMed  CAS  Google Scholar 

  • McKnight SL, Mustin M, Miller OL (1977) Electron microscopic analysis of chromosome metabolism in the Drosophila melano gaster embryo. Cold Spring Harbor Symp Quant Biol 42:741–754

    Google Scholar 

  • Nevins JR, Darnell JE (1978) Groups of adenovirus type 2 mRNA’s derived from a large primary transcript: Probable nuclear origin and possible common 3’ ends. J Virol 25:811–823

    PubMed  CAS  Google Scholar 

  • Perry RP, Kelley DE, Frederici K, Rottman F (1975a) The methylated constituents of L cell messenger RNA: Evidence for an unusual Cluster at the 5’ terminus. Cell 4:387–394

    Article  PubMed  CAS  Google Scholar 

  • Perry RP, Kelley DE, Frederici K, Rottman F (1975b) Methylated constituents of heterogeneous nuclear RNA: Presence of blocked 5’ terminal struetures. Cell 6:13–19

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot NJ (1976) Sequence analysis of the 3’ noncoding regions of rabbit alpha- and beta-globin messenger RNAs. J Mol Biol 107:491–525

    Article  PubMed  CAS  Google Scholar 

  • Reeves R (1977) Structure of Xenopus ribosomal gene chromatin during changes in genomic transcription rates. Cold Spring Harbor Symp Quant Biol 42:709–722

    Google Scholar 

  • Sripati CE, Groner Y, Warner JR (1976) Methylated, blocked 5’ termini of yeast mRNA. J Biol Chem 251:2898–2904

    PubMed  CAS  Google Scholar 

  • Tilghman SM, Tiemeir DC, Seidman JG, Peterlin BM, Sullivan M, Maizel JV, Leder P (1978) Intervening sequence of DNA identified in the structural portion of a mouse beta-globin gene. Proc Nati Acad Sci USA 78:725–729

    Article  Google Scholar 

  • Tonegawa S, Maxam AM, Tizard R, Bernhard O, Gilbert W (1978) Sequence of a mouse germ-line gene for a variable region of an Immunoglobulin. Proc Natl Acad Sci USA 75:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Wei CM, Gershowitz A, Moss B (1976) 5’-terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry 15:397–401

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered configuration. Science 193:848–856

    Article  PubMed  CAS  Google Scholar 

  • Winicov I, Perry RP (1976) Synthesis, methylation, and capping of nuclear RNA by a subcellular system. Biochemistry 15:5039–5046

    Article  PubMed  CAS  Google Scholar 

Literatur;Transfer-Rna

  • Holley RW, Apgar J, Everettt GA, Madison JT, Marquisee M, Merrill SH,Penswick JR,Zamir A (1965) Structure of a ribonucleic aeid. Science 147:1462–1465

    Article  PubMed  CAS  Google Scholar 

  • Nishimura S (1974) Transfer-RNA: Structure and biosynthesis. In: Burton K (ed) Biochemistry of nucleic aeids. Butterworths, London (MTP International review of science, pp 289–322)

    Google Scholar 

  • Smith JD (1972) Genetics of transfer RNA. Annu Rev Genet 6: 235–256

    Article  PubMed  CAS  Google Scholar 

  • Smith JD (1976) Transcription and processing of transfer RNA precursors. Progr Nucl Acid Res Mol Biol 16:25–73

    Article  CAS  Google Scholar 

  • Sussman JL, Kim SH (1976) Three-dimensional structure of a transfer RNA in two crystal forms. Science 192:853–858

    Article  PubMed  CAS  Google Scholar 

Literatur;Ribosomen

  • Attardi G, Amaldi F (1970) Structure and synthesis of ribosomal RNA. Annu Rev Biochem 39:183–226

    Article  PubMed  CAS  Google Scholar 

  • Brimacombe R, Stoffler G, Wittmann HG (1978) Ribosome structure. Annu Rev Biochem 47:217–249

    Article  PubMed  CAS  Google Scholar 

  • Craig NC (1974) Ribosomal RNA synthesis in eukaryotes and its regulation. In: Burton K (ed) Biochemistry of nucleic acids. Butterworths, London (MTP International review of science, pp 255–288)

    Google Scholar 

  • Davies J, Nomura M (1972) The genetics of bacterial ribosomes. Annu Rev Genet 6:203–234

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG (1972) Structure and function of bacterial ribosomes. Annu Rev Biochem 41:377–408

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG (1977) Structure and funetion of bacterial ribosomes. Annu Rev Biochem 46:173–200

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG (1977) Aspects of ribosome structure and funetion. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis. Academic Press, New York, pp 81–116

    Google Scholar 

  • Maden BEH (1976) Ribosomal precursor RNA and ribosome formation in eukaryotes. Trends in Biochem Science 1:196–199

    CAS  Google Scholar 

  • Maden BEH, Salim M, Summers DF (1972) Maturation pathway for ribosomal RNA in HeLa cell nucleolus. Nature New Biol 237:5–9

    PubMed  CAS  Google Scholar 

  • Nomura M (1969) Ribosomes. Sci Am 221:28–35

    Article  PubMed  CAS  Google Scholar 

  • Nomura M (1970) Bacterial ribosome. Bacteriol Rev 34:228–277

    PubMed  CAS  Google Scholar 

  • Nomura M (1973) Assembly of bacterial ribosomes. Science 179: 864–873

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Tissieres A, Lengyel P (eds) (1974) Ribosomes. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Russell PJ, Hammett JR, Selker EU (1976) Neurospora crassa cytoplasmic ribosomes: ribosomal ribonucleic acid synthesis in the wild type. J Bacteriol 127:785–793

    PubMed  CAS  Google Scholar 

  • Udem SA, Warner JR (1972) Ribosomal RNA synthesis in Saccharo myces cerevisiae. J Mol Biol 65:227–242

    Article  PubMed  CAS  Google Scholar 

  • Wellauer PK, Dawid IG, Brown DD, Reeder RH (1976) The molecular basis for length heterogenity in ribosomal DNA from Xenopus laevis. J Mol Biol 105:461–486

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russell, P.J. (1983). Transkription. In: Genetik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68865-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68865-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12063-6

  • Online ISBN: 978-3-642-68865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics