Skip to main content

The Dualism of Expression of onc-Genes: Transformation versus Differentiation

  • Conference paper
Biochemistry of Differentiation and Morphogenesis

Abstract

Tumor cells differ from their normal counterparts in two important functional properties: they are capable of indefinite proliferation and they display a more or less drastically altered metabolism. The fundamental molecular mechanisms responsible for these dramatic pheno-typic changes are not yet understood, but can be directly investigated by the use of tumor viruses. Many tumor viruses are known which contain a so-called onc or tumor gene that is solely responsible for tumor formation in vivo and cell transformation in vitro. Some of these genes have been named according to the histopathological type of tumor they induce, for instance myb for a gene which induces myeloblastosis and src for one which results in a sarcoma (Coffin et al. 1981). Of special interest are the RNA tumor viruses, because homologous counterparts of the onc gene of these viruses are found in the genome of normal cells (Bishop 1981). These cellular onc genes (c-onc) are not only detected in the natural host of the virus but also in other animal species, having been highly conserved during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anders A, Anders F (1978) Etiology of cancer as studied in the platyfish-swordtail-system. Biochim Biophys Acta 516:61–95

    PubMed  CAS  Google Scholar 

  • Balk SD, Polimeni PI, Hoon BS, LeStourgeon DN, Mitchell RS (1979) Proliferation of Rous sarcoma virus-infected, but not of normal, chicken fibroblasts in a medium of reduced calcium and magnesium concentrations. Proc Natl Acad Sci USA 76:3913–3916

    Article  PubMed  CAS  Google Scholar 

  • Ball EH, Singer SJ (1981) Association of microtubules and intermediate filaments in normal fibroblasts and its disruption upon transformation by a temperature-sensitive mutant of Rous sarcoma virus. Proc Natl Acad Sci USA 78:6986–6990

    Article  PubMed  CAS  Google Scholar 

  • Barnekow A, Boschek CB, Ziemiecki A, Bauer H (1980) Detection of the src-gene product pp60src and its associated protein kinase on the surface of Rous sarcoma virus transformed cells. Biochem Soc Trans 8:735–736

    PubMed  CAS  Google Scholar 

  • Barnekow A, Bauer H, Boscheck CB, Friis RR, Ziemiecki A (1981) Rous sarcoma virus transformation: action of the src-gene product. In: Schweiger HG (ed) International cell biology 1980–1981. Springer, Berlin Heidelbert New York, pp 457–466

    Chapter  Google Scholar 

  • Barnekow A, Schartl M, Anders F, Bauer H (1982) Identification of a fish protein associated with a kinase activity and related to the Rous sarcoma virus transforming protein. Cancer Res 42 (6):2429–2433

    PubMed  CAS  Google Scholar 

  • Bauer H (1982) Cell transformation by RNA sarcoma virus. In: Nicolini C (ed) Cell growth. Plenum Press, New York London, pp 653–671

    Google Scholar 

  • Bauer H, Yoshikawa Y (1980) Oncofetal antigens as markers for retrodifferentiation in malignant transformation. In: Cold Spring Harbor Conferences on Cell Proliferation, vol VII, Cold Spring Harbor, pp 1231–1238

    Google Scholar 

  • Bauer H, Barnekow A, Rose G (1982) The transforming protein of Rous sarcoma virus, pp60src: growth and cell proliferation inducing properties. Hormones and Cell Regulation, vol 6, INSERM European Symposium. Dumont JE, Nunez J, Schultz G (eds). Elsevier Biomedical Press, pp 187–205

    Google Scholar 

  • Becker D, Kurth R, Critchley D, Friis RR, Bauer H (1977) Distinguishable transformation defective phenotypes among temperature sensitive mutants of Rous sarcoma virus. J Virol 21:1042–1055

    PubMed  CAS  Google Scholar 

  • Bishop JM (1978) Retroviruses. Annu Rev Biochem 47:35–88

    Article  PubMed  CAS  Google Scholar 

  • Bishop JM (1981) Enemies Within: the genesis of retrovirus oncogenes. Cell 23:5–6

    Article  PubMed  CAS  Google Scholar 

  • Boschek CB (1982) Organization changes of cytoskeletal proteins during cell transformation. In: Klein G (ed) Advances in Viral Oncology. Raven Press, New York, in press

    Google Scholar 

  • Boschek CB, Jockusch BM, Friis RR, Back R, Grundmann E, Bauer H (1981) Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell 24:175–184

    Article  PubMed  CAS  Google Scholar 

  • Bossi D, Cittadini A, Wolf F, Milani A, Magalini S, Terranova T (1979) Intracellular calcium and magnesium content and aerobic lactate production in intact ehrlich ascites tumour cells. FEBS Lett 104:6–11

    Article  PubMed  CAS  Google Scholar 

  • Brautigan DL, Bornstein P, Gallis B (1981) Phosphotyrosyl protein phosphatase. J Biol Chem 256:6519–6522

    PubMed  CAS  Google Scholar 

  • Bretscher A, Weber K (1980) Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell 20:839–847

    Article  PubMed  CAS  Google Scholar 

  • Brugge JS, Erikson RL (1977) Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269:346–348

    Article  PubMed  CAS  Google Scholar 

  • Brugge JS, Erikson E, Collett MS (1978) Peptide analysis of the transformation-specific antigen from avian sarcoma virus-transformed cells. J Virol 26:773–782

    PubMed  CAS  Google Scholar 

  • Calothy G, Pessac B (1976) Growth stimulation of chick embryo neuro-retinal cells infected with RSV: relationship to viral replication and morphological transformation. Virol 71:336–345

    Article  CAS  Google Scholar 

  • Carroll RC, Ash JF, Vogt PK, Singer SJ (1978) Reversion of transformed glycolysis to normal by inhibition of protein synthesis in rat kidney cells infected with temperature-sensitive mutant of Rous sarcoma virus. Proc Natl Acad Sci USA 75:5015–5019

    Article  PubMed  CAS  Google Scholar 

  • Cassmann M, Vetterlin D (1974) Allosteric and non-allosteric interaction with reduced nicotinamide adenine dinucleotide in two forms of cytoplasmic malic dehydrogenase. Biochemistry 13:684–689

    Article  Google Scholar 

  • Chafouleas JG, Bolton WE, Hidaka H, Boyd III AE, Means AR (1982) Calmodulin and the cell cycle: involvement in regulation of cell-cycle progression. Cell 28:41–50

    Article  PubMed  CAS  Google Scholar 

  • Coffin JM, Varmus HE, Bishop JM, Essex M, Hardy Jr WD, Martin GS, Rosenberg NE, Scolnick EM, Weinberg RA, Vogt PK (1981) Proposal for naming host cell-derived inserts in retrovirus genomes. J Virol 40:953–957

    PubMed  CAS  Google Scholar 

  • Collett MS, Erikson RL (1978) Protein kinase activity associated with the avian sarcoma virus sre gene product. Proc Natl Acad Sci USA 77:2021–2024

    Article  Google Scholar 

  • Diegelmann RF, Peterkofsky B (1972) Collagen biosynthesis during connective tissue-development in chick embryo. Biol 28:443–453

    CAS  Google Scholar 

  • Foulkes JG, Howard RF, Ziemiecki A (1981) Detection of a novel mammalian protein phosphatase with activity for phosphotyrosine. FEBS Lett 130:197–200

    Article  PubMed  CAS  Google Scholar 

  • Friis RR, Schwarz RT, Schmidt MFG (1977) Phenotype of Rous sarcoma virus-transformed fibroblasts. An argument for a multifunctional src gene product. Med Microbiol Immunol 164–155–164

    Google Scholar 

  • Friis RR, Jockusch BM, Boschek CB, Ziemiecki H, Rübsamen H, Bauer H (1980) Transformation-defective temperature-sensitive mutants of Rous sarcoma virus have a reversibly defective svc-qene product. Cold Spring Harbor Symp Quant Biol 44:1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Geiger B, Tokuyasu KT, Dutton AH, Singer SJ (1980) Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci USA 77:4127–4131

    Article  PubMed  CAS  Google Scholar 

  • Glenney JR Jr, Weber K (1980) Calmodulin-binding proteins of the microfilaments present in isolated brush borders and microvilli of intestinal epithelial cells. J Biol Chem 255:10551–10554

    PubMed  CAS  Google Scholar 

  • Glossmann H, Presek P, Eigenbrodt E (1981) Association of the src-gene product of Rous sarcoma virus with a pyruvate-kinase inactivating factor. Mol Cell Endocrinol 23:49–64

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Moran JS (1976) Growth factors in mammalian cell culture. Anna Rev Biochem 45:531–558

    Article  CAS  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma viruses phosphorylates tyrosine. Proc Natl Acad Sci USA 77:1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Jockusch BM, Isenberg G (1981) Interaction of alpha-actinin and vinculin with actin: opposite effects on filament network information. Proc Natl Acad Sci USA 78:3005–3009

    Article  PubMed  CAS  Google Scholar 

  • Lenz JR, Chatterjee GE, Maroney A, Baglioni C (1978) Phosphorylated sugars stimulate protein synthesis and Met-tRNA binding activity in extracts of mammalian cells. Biochemistry 17:80–87

    Article  PubMed  CAS  Google Scholar 

  • Levinson W, Bhatnagar RS, Liu T-Z (1975) Loss of ability to synthesize collagen in fibroblasts transformed by Rous sarcoma virus. J Int. Cancer Inst. 55:807–810

    CAS  Google Scholar 

  • Marx JL (1980) Calmodulin: A protein for all seasons. Science 208:274–276

    Article  PubMed  CAS  Google Scholar 

  • Patschinsky T, Sefton BM (1981) Evidence that there exist four classes of RNA tumor viruses which encode proteins with associated tyrosine protein kinase activities. J Virol 39:104–114

    PubMed  CAS  Google Scholar 

  • Presek P, Glossmann H, Eigenbrodt E, Schoner W, Rübsamen H, Friis RR, Bauer H (1980) Similarities between a phosphoprotein (pptOsrc)-associated protein kinase of Rous sarcoma virus and a cyclic adenosine 3’:5’-monophosphate-independent protein kinase that phosphorylates pyruvate kinase type M2. Cancer Res 40:1733–1741

    PubMed  CAS  Google Scholar 

  • Purchio AF (1982) Evidence that pp60src, the product of the Rous sarcoma virus sro gene, undergoes autophosphorylation. J Virol 41:1–7

    PubMed  CAS  Google Scholar 

  • Radke K, Gilmore T, Martin GS (1980) Transformation by Rous sarcoma virus: a cellular substrate for transformation-specific protein phosphorylation contains phosphotyrosine. Cell 21:821–828

    Article  PubMed  CAS  Google Scholar 

  • Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured Hela cells. J Biol Chem 254:2669–2676

    PubMed  CAS  Google Scholar 

  • Rübsamen H, Saltenberger K, Friis RR, Eigenbrodt E (1982) Cytosolic malic dehydrogenase activity is associate with a putative substrate for the transforming gene product of Rous sarcoma virus. Proc Natl Acad Sci USA 79:228–232

    Article  PubMed  Google Scholar 

  • Schartl A, Schartl M, Anders F (1982a) Promotion and regression of neoplasia by testosterone-oromoted cell differentiation in Xiphophorus and Girardinus. In: Hecker E (ed) Carcinogenesis and biological effects of tumor promoter. Raven Press, New York, submitted

    Google Scholar 

  • Schartl M, Barnekow A, Bauer H, Anders F (1982b) Oncogenes in Xiphophorus: A relation in inheritance and expression between a tumor gene and the cellular homologue of the Rous sarcoma virus transforming gene. Cancer Res (in press)

    Google Scholar 

  • Sefton BM, Hunter T, Beemon K, Eckhart W (1980) Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell 20:807–816

    Article  PubMed  CAS  Google Scholar 

  • Sefton BM, Hunter T, Ball EH, Singer SJ (1981) Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus. Cell 24:165–174

    Article  PubMed  CAS  Google Scholar 

  • Singh VM, Singh M, August JT, Horecker BL (1974) Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus: Intracellular levels of glycolytic intermediates. Proc Natl Acad Sci USA 71:4129–4132

    Article  PubMed  CAS  Google Scholar 

  • Uriel J (1976) Cancer, retrodifferentiation, and the myth of Faust. Cancer Res 36:4269–4275

    PubMed  CAS  Google Scholar 

  • Weber M, Friis RR (1979) Dissociation of transformation parameter using temperature-conditional mutants of Rous sarcoma virus. Cell 16:25–32

    Article  PubMed  CAS  Google Scholar 

  • Willingham MC, Jay G, Pastan I (1979) Localization of the ASV sro gene product to the plasma membrane of transformed cells by electron microscopic immunocyto-chemistry. Cell 18:125–134

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa Y, Ignajatovic J, Bauer H (1979) Tissue-specific expression of onco-fetal antigens during embryogenesis. Differentiation 15:41–47

    Article  PubMed  CAS  Google Scholar 

  • Zielke HR, Ozand PT, Tildon JT, Sevdalian DA, Cornblath M (1976) Growth of human diploid fibroblasts in the absence of glucose utilization. Proc Natl Acad Sci USA 73:4110–4114

    Article  PubMed  CAS  Google Scholar 

  • Ziemiecki A, Friis RR (1980) Phosphorylation of pp60src and the cycloheximide insensitive activation of the pp60src-associated kinase activity of transormation-defective temperature-sensitive mutants of Rous sarcoma virus. Virol 106:391–394

    Article  CAS  Google Scholar 

  • Ziemiecki A, Friis RR, Bauer H (1982) Half-life of the Rous sarcoma virus transforming protein pp60src and its associated kinase activity. Mol Cell Biol 4:355–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bauer, H., Barnekow, A., Boschek, C.B., Friis, R.R., Ziemiecki, A. (1982). The Dualism of Expression of onc-Genes: Transformation versus Differentiation. In: Jaenicke, L. (eds) Biochemistry of Differentiation and Morphogenesis. Colloquium der Gesellschaft für Biologische Chemie 25.–27. März 1982 in Mosbach/Baden, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68833-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68833-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68835-5

  • Online ISBN: 978-3-642-68833-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics