Advertisement

Spontaneous Biological Pattern Formation in the Three-Dimensional Sphere. Prepatterns in Mitosis and Cytokinesis

  • Axel Hunding
Part of the Springer Series in Synergetics book series (SSSYN, volume 17)

Abstract

Spontaneous pattern formation may arise in (bio) chemical networks coupled to diffusion, i.e. an initial homogeneous distribution of certain chemical species may become unstable by changing variables such as enzyme activity or simply the size (radius) of the sphere. Hereby a new inhomogeneous, yet stable, concentration distribution is set up within the sphere, without any outside control imposing the geometry of the pattern, which is created spontaneously. Such spatial dissipative structures, or Turing structures, give rise to gradient- formation, i.e. high concentration at one (spontaneously created) pole and low at the opposite pole, a phenomenon of particular interest in the context of prepattern formation in blastulas. They also give rise to a bipolar concentration pattern, which should be an ideal prepattern for spindleformation and chromosome distribution in the process of mitosis (cell division).

Keywords

Oblate Spheroid Chromosome Distribution Spindle Fiber Chemical Network Cleavage Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.D. Billing and A. Hunding, Bifurcation analysis of nonlinear reaction-diffusion systems: Dissipative structures in a sphere, J.Chem.Phys. 69 (1978) 3603.CrossRefGoogle Scholar
  2. 2.
    A. Hunding, Dissipative structures in reaction-diffusion systems: Numerical determination of bifurcations in the sphere, J.Chem. Phys. 72 (1980) 5241.MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Hunding and G.D. Billing, Secondary bifurcations in spherical reaction-diffusion systems, Chem.Phys. 45 (1980) 359.MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Hunding, Possible prepatterns governing mitosis: The mechanism of spindle-free chromosome movement in Aulacantha scolymantha, J.Theor.Biol. 89 (1981) 353.CrossRefGoogle Scholar
  5. 5.
    A. Hunding and G.D. Billing, Spontaneous pattern formation in spherical nonlinear reaction-diffusion systems: Selection rules favor the bipolar “mitosis” pattern, J.Chem.Phys. 75. (1981) 486.CrossRefGoogle Scholar
  6. 6.
    S.P. Peterson and M.W. Berns, The Centriolar complex, Int. Rev. Cyt. 64 (1980) 81.CrossRefGoogle Scholar
  7. 7.
    J.D. Pickett-Heaps, The autonomy of the centriole: Fact or fallacy? Cytobios 3 (1971) 205.Google Scholar
  8. 8.
    P. Luykx, Cellular mechanisms of chromosome distribution, Int.Rev. Cyt. Suppl. 2 (1970).Google Scholar
  9. 9.
    D. Scölössi, P. Calarco and R.P. Donahue, Absence of centrioles in the first and second meiotic spindles of mouse oocytes, J.Cell. Sci. 11 (1972) 521.Google Scholar
  10. 10.
    R. Dietz, The dispensability of the centrioles in the spermatocytes divisions of Pales Ferruginea (Nematooera), Chromosomes Today 1 (1964) 161.Google Scholar
  11. 11.
    M.W. Berns and S.M. Richardson, Continuation of mitosis after selective laser microbeam destruction of the centriolar region, J.Cell.Biol. 75 (1977) 977.Google Scholar
  12. 12.
    J.B. Rattner and M.W. Berns, Distribution of microtubules during centriole separation in rat Kangaroo (Potorous) cells, Cytobios 15 (1976) 37.Google Scholar
  13. 13.
    J. E. Aubin, M. Osborn and K. Weber, Variations in the distribution and migration of centriole duplexes in mitotic PtK2 cells studied by the immunoflurescence microscopy, J. Cell. Sci. 43, (1980) 177.Google Scholar
  14. 14.
    P.G. Gandolfi, Die ultrastruktur der Chromosomen-Aufregulation in männlich determinierten eiern der gallmücke Heteropeza pygmaea, Biol. Zbl. 98 (1979) 409.Google Scholar
  15. 15.
    H. Bauer, R. Dietz and C. Röbbelen, Die spermatocytenteilungen der Tipuliden, Chromosoma 12 (1961) 116.CrossRefGoogle Scholar
  16. 16.
    R.L. Margolis, L. Wilson and B.I. Kiefer, Mitotic mechanism based on intrinsic microtubule behaviour, Nature 272 (1978) 450.CrossRefGoogle Scholar
  17. 17.
    A. Forer, Characterization of the mitotic traction system, and evidence that birefringent spindle fibers neither produce nor transmit force for chromosome movements, Chromosoma 19 (1966) 44.CrossRefGoogle Scholar
  18. 18.
    R.B. Nicklas, Chromosome movements: Facts and hypotheses, in Mitosis. Facts and Questions (Eds. M. Little, N. Paweletz, C. Petzelt, H. Ponstingl, D. Scroeter and H.-P. Zimmermann ), Springer-Verlag, Berlin 1977.Google Scholar
  19. 19.
    W.G. Whaley, M. Dauwalder and J.E. Kaphart, The Golgi apparatus and an early stage in cell plate formation, J.Ultrastr.Res. 15 (1966 ) 169.Google Scholar
  20. 20.
    T.E. Schroeder, Dynamics of the contractile ring, in Molecules and Cell Movement (Eds. S. Inoue and R.E. Stephens) Raven Press, New York 1975.Google Scholar
  21. 21.
    Y. Hiramoto, Cell division without mitotic apparatus in sea urchin eggs, Exp.Cell Res. 11 (1956 ) 630.CrossRefGoogle Scholar
  22. 22.
    R. Rapaport, Cytokinesis in Animal Cells, Int.Rev.Cyt. 31 (1971) 169.CrossRefGoogle Scholar
  23. 23.
    D.A. Marsland, A.M. Zimmerman and W. Auclair, Cell division: Experimental induction of cleavage furrows in the eggs of Arbacia punctu- lata, Exp.Cell Res. 21 (1 960 ) 179.Google Scholar
  24. 24.
    Y. Hiramoto, Further studies on cell division without mitotic apparatus in sea urchin eggs, J.Cell Biol. 25 (1965) 161.Google Scholar
  25. 25.
    A.C. Scott, Furrowing in flattened sea urchin eggs, Biol.Bull. 119 (1960) 246.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Axel Hunding
    • 1
  1. 1.Institute for ChemistryUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations