Annealing and Residual Damage

  • Siegfried Mader
Part of the Springer Series in Electrophysics book series (SSEP, volume 10)


This chapter describes aspects of ion implantation damage which are important for Si process technology. Primary damage consists of atomic displacements and amorphization of Si (except for B implantation). Annealing restores crystallinity and induces electrical activation of implanted dopant ions. It can also cause the formation of residual defects with well-defined crystallographic nature, for example stacking faults and dislocation loops. During prolonged annealing these defects change their sizes and configurations in response to climb forces. The climb forces are related to indiffusion of the implanted profile and to surface oxidation. Residual dislocations also respond to mechanical stresses which arise from the geometries of masking patterns used for defining active device areas.


Edge Dislocation Dislocation Loop Dopant Atom Junction Depth Residual Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.F. Gibbons, Proc. IEEE, 60, 1062 (1972).CrossRefGoogle Scholar
  2. 2.
    G. Dearnaley, J.H. Freeman, R.S. Nelson and J. Stephen: Ion Implantation, North-Holland, Amsterdam 1973.Google Scholar
  3. 3.
    A.H. Agajanian: Ion Implantation in Microelectronics, IFI Plenum, New York 1981.Google Scholar
  4. 4.
    Defects in Semiconductors, ed. by J. Narayan and T.Y. Tan, North-Holland, New York 1981.Google Scholar
  5. 5.
    Microscopy of Semiconducting Materials, 1981, ed. by A.G. Cullis and D.C. Joy, The Inst, of Phys., Bristol 1981.Google Scholar
  6. 6.
    Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx, R. Gevers, G. Remaut, and J. Van Landuyt, North-Holland, Amsterdam 1970.Google Scholar
  7. 7.
    W.K. Chu, J.W. Mayer, and M.A. Nicolet: Backscattering Spectrometry, Academic Press, New York 1978.Google Scholar
  8. 8.
    G. Foti et al., réf. 5, p. 79.Google Scholar
  9. 9.
    D.K. Sadana and J. Washburn, ref. 5, p. 301.Google Scholar
  10. 10.
    J.W. Corbett et al., réf. 4, p. 1.Google Scholar
  11. 11.
    J.R. Dennis and E.B. Hale, J. Appl. Phys. 49, 1119 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    J.F. Gibbons, W.S. Johnson, and S.W. Mylroie: Projected Range Statistics, Halstead Press, Stroudsburg 1975.Google Scholar
  13. 13.
    D.K. Bri ce: Ion Implantation Range and Energy Deposition Distribution, IFI Plenum, New York 1975.Google Scholar
  14. 14.
    U. Littmark and J.F. Ziegler: Handbook of Range Distributions for Energetic Ions in All Elements, Pergamon Press, New York 1975.Google Scholar
  15. 15.
    Laser and Electron Beam Processing of Materials, ed. by C.W. White and P.S. Peercy, Academic Press, New York 1980.Google Scholar
  16. 16.
    Laser and Electron-Beam Solid Interactions. and Materials Processing, ed. by J.F. Gibbons, L.D. Hess, and T.W. Sigmon, North-Holland, New York 1981.Google Scholar
  17. 17.
    R.T. Fulks, C.J. Russo, P.R. Hanley, and T.I. Kamins, Appi. Phys. Lett. 39, 604 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    L. Csepregi, E.F. Kennedy, T.J. Gallagher, J.W. Mayer, and T.W. Sigmon, J. Appi. Phys. 48, 4234 (1977).ADSCrossRefGoogle Scholar
  19. 19.
    L. Csepregi, E.F. Kennedy, J.W. Mayer, and T.W. Sigmon, J. Appi. Phys. 43, 3906 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    S.A. Kokorowski, G.L. Olson, and L.D. Hess, J. Appi. Phys. 53, 921 (1982).ADSCrossRefGoogle Scholar
  21. 21.
    J. Washburn, ref. 4, p. 209.Google Scholar
  22. 22.
    W.K; Wu and J. Washburn, J. Appi. Phys. 48, 3742 (1977).ADSCrossRefGoogle Scholar
  23. 23.
    D. Nobili, A. Armigliatu, M. Finnetti, and S. Solmi, J. Appi. Phys. 53, 1484 (1982).ADSCrossRefGoogle Scholar
  24. 24.
    D.A. Antoniadis and R.W. Dutton, in Process and Device Modelling for Integrated Circuit Design, ed. by F. van de Wiele, W.L. Engl and P.G. Jespers, Noordhoff, Leyden 1977, p. 837.Google Scholar
  25. 25.
    S. Mader and A.E. Michel, Phys. Stat. Sol. (a) 33, 793 (1979).ADSCrossRefGoogle Scholar
  26. 26.
    S. Mader, J. Electron. Mater. 9, 963 (1980).ADSCrossRefGoogle Scholar
  27. 27.
    U. Gösele and H. Strunk, Appi. Phys. 20, 265 (1979).ADSCrossRefGoogle Scholar
  28. 28.
    S.M. Hu, ref. 4, p. 333.Google Scholar
  29. 29.
    M. Tamura, Phil. Mag. 35, 663 (1977).ADSCrossRefGoogle Scholar
  30. 30.
    A. Schmitt and G. Schorer, Appi. Phys. 22, 137 (1980).ADSCrossRefGoogle Scholar
  31. 31.
    B.J. Masters and E.F. Gorey, J. Appi. Phys. 49, 2717 (1978).ADSCrossRefGoogle Scholar
  32. 32.
    T.Y. Tan et al., ref. 4, p. 179.Google Scholar
  33. 33.
    M. Kiritani, Y. Machara, and H. Takata, J. Phys. Soc. Japan 41, 1575 (1976).ADSCrossRefGoogle Scholar
  34. 34.
    M.R. Ruehle, in Radiation-Induced Voids in Metals, ed. by J.W. Corbett and L.C. Ianniello, AEC Information Services 1972.Google Scholar
  35. 35.
    T.E. Seidel, R.L. Meek, and A.G. Cullis, J. Appl. Phys. 46, 600 (1975).Google Scholar
  36. 36.
    H.J. Geipel and W.K. Tice, Appl. Phys. Lett. 30, 325 (1977).ADSCrossRefGoogle Scholar
  37. 37.
    A. Ourmaza et al., ref. 5, p. 63.Google Scholar
  38. 38.
    P. Ashburn, C. Bull, K.H. Nicholas, and G.R. Booker, Solid-St. Electron. 20, 731 (1977).ADSCrossRefGoogle Scholar
  39. 39.
    C. Bull, P. Ashburn, G.R. Booker, and K.H. Nicholas, Solid-St. Electron. 22, 95 (1979).ADSCrossRefGoogle Scholar
  40. 40.
    M. Tamura, N. Yoshihiro, and T. Tokuyama, Appl. Phys. 17, 31 (1978).ADSCrossRefGoogle Scholar
  41. 41.
    T. Koji, W.F. Tseng, J.W. Mayer, and T. Suganuma, Solid-St. Electron. 22, 335 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Siegfried Mader
    • 1
  1. 1.IBM General Technology DivisionHopewell JunctionUSA

Personalised recommendations