Acid-Base Kinectics of Blood During CO2- and O2-Uptake

  • A. Luttmann
  • K. Mückenhoff
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Studies on the acid base kinetics of blood were performed to determine the time blood needs to reach thermodynamic equilibrium after different kinds of acid base disturbances. In vivo such acid base changes occur during each circulation of the blood in the lung and tissue capillaries, when CO2 and O2 is exchanged and in working muscle when during heavy muscular exercise acidic substances diffuse into the blood. For reasons of respiration physiology it is important to know whether or not the blood acid base quantities have reached their final value when leaving the lung or passing the peripheral chemoreceptors or central chemosensitive structures, because the magnitude of ventilation and consequently the acid base status of the whole body is mainly determined by the actual acid base values at these structures.


Carbonic Anhydrase Acid Base Carbonic Anhydrase Activity Stepwise Change Peripheral Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bidani A, Crandall ED (1978) Slow postcapillary pH changes in blood in anesthetized animals. J Appl Physiol 45:674–680PubMedGoogle Scholar
  2. Crandall ED, Klocke RA, Forster RE (1971) Hydroxyl ion movement across the human erythro-cyte membrane. J Gen Physiol 57:669–683CrossRefGoogle Scholar
  3. Crandall ED, Bidani A, Forster RE (1977) Postcapillary changes in blood pH in vivo during carbonic anhydrase inhibition. J Appl Physiol 43:582–590PubMedGoogle Scholar
  4. Crandall ED, O’Brasky JE (1978) Direct evidence for participation of rat lung carbonic anhydrase in CO2 reactions. J Clin Invest 62:618–622PubMedCrossRefGoogle Scholar
  5. Deuticke B (1973) Transport of monovalent organic anions across the red cell membrane. In: Gerlach E, Moser K, Deutsch E, Wilmans W (eds) Erythrocytes, thrombocytes, leukocytes. Thieme, Stuttgart, p 81Google Scholar
  6. Deuticke B, Rickert F, Beyer E (1978) Stereoselective SH-dependent transfer of lactate in mammalian erythrocytes. Biochim Biophys Acta 507:137–155PubMedCrossRefGoogle Scholar
  7. Dubinsky WP, Racker E (1978) The mechanism of lactate transport in human erythrocytes. J Membr Biol 44:25–36PubMedCrossRefGoogle Scholar
  8. Effros RM, Chang RSY, Silverman P (1978) Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science 199:427–429PubMedCrossRefGoogle Scholar
  9. Forster RE, Crandall ED (1975) Time courses of exchanges between red cells and extracellular fluid during CO2 uptake. J Appl Physiol 38:710–718PubMedGoogle Scholar
  10. Forster RE, Obaid AL, Crandall ED, Itada N (1980) Cl and HCO3 movements across the red cell membrane. In: Bauer C, Gros G, Bartels H (eds) Biophysics and physiology of carbon dioxide. Springer, Berlin Heidelberg New York, p 285CrossRefGoogle Scholar
  11. Grodins FS, Buell J, Bart AJ (1967) Mathematical analysis and digital simulation of the respiratory control system. J Appl Physiol 22:260–276PubMedGoogle Scholar
  12. Gros G, Wittmann B, Guggenberger L (1981) Carbamate kinetics of blood proteins. In: Piiper J, Scheid P (eds) Gas exchange function of normal and diseased lungs. Prog Respir Res, vol 16. Karger, Basel, p 205Google Scholar
  13. Hill EP, Power GG, Longo LD (1973) Mathematical simulation of pulmonary O2 and CO2 exchange. Am J Physiol 224:904–917PubMedGoogle Scholar
  14. Hill EP, Power GG, Gilbert RD (1977) Rate of pH changes in blood plasma in vitro and in vivo. J Appl Physiol 42:928–934PubMedGoogle Scholar
  15. Klocke RA (1978) Catalysis of CO2 reactions by lung carbonic anhydrase. J Appl Physiol 44:882–888PubMedGoogle Scholar
  16. Klocke RA, Anderson KK, Rotman HH, Forster RE (1972) Permeability of human erythrocytes to ammonia and weak acids. Am J Physiol 222:1004–1013PubMedGoogle Scholar
  17. Luttmann A (1977) Steady state and transientes Verhalten von Säuren-Basen Parametern und Erythrozytenvolumen bei der Bindung von CO2 im Blut (Entwicklung eines schnell ansprechenden CO2-Meßsystems). Diss Ruhr-Univ Abt Biol, BochumGoogle Scholar
  18. Luttmann A (1980) Untersuchungen zum dynamischen Verhalten der Säuren-Basen-Parameter des Blutes nach respiratorischen und metabolischen Störungen. Habilitationssch Ruhr-Univ Abt Naturwiss Med, BochumGoogle Scholar
  19. Luttmann A, Mückenhoff K, Loeschcke HH (1980) Kinetics of acid-base parameters of blood after respiratory and metabolic disturbances. In: Bauer C, Gros G, Bartels H (eds) Biophysics and physiology of carbon dioxide. Springer, Berlin Heidelberg New York, p 321CrossRefGoogle Scholar
  20. Luttmann A, Ahmad HR, Mückenhoff K, Plaas-Link A (1981) Influence of weak acids and bases on the pH and pCO2 kinetics in the blood. In: Piiper J, Scheid P (eds) Gas exchange function of normal and diseased lungs. Prog Respir Res, vol 16. Karger, Basel, p 193Google Scholar
  21. Piiper J (1979) Blood-gas equilibration of CO2 in pulmonary gas exchange of mammals and birds. Physiologist 22:54–59PubMedGoogle Scholar
  22. Ponté J, Purves JM (1980) Changes in pH and pCO2 with time in pulmonary post-capillary blood in cats. In: Bauer C, Gros G, Bartels H (eds) Biophysics and physiology of carbon dioxide. Springer, Berlin Heidelberg New York, p 315CrossRefGoogle Scholar
  23. Rispens P, Oeseburg B, Zock JP, Zijlstra WG (1980) Intraaortic decrease of blood pH. Pflügers Arch 386:97–99PubMedCrossRefGoogle Scholar
  24. Roughton FJW (1935) Recent work on carbon dioxide transport by the blood. Physiol Rev 15:241–296Google Scholar
  25. Roughton FJW (1964) Transport of oxygen and carbon dioxide. In: Handbook of physiology, vol I: Respiration. Am Physiol Soc, Washington, p 767Google Scholar
  26. Scheid P, Teichmann J, Adaxo F, Piiper J (1972) Gas-blood CO2 equilibration in dog lungs during rebreathing. J Appl Physiol 33:582–588PubMedGoogle Scholar
  27. Wieth JO (1980) Interaction between two types of pH-equilibrating proton and hydroxyl ion carriers. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, p 512Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • A. Luttmann
    • 1
  • K. Mückenhoff
    • 2
  1. 1.Institut für ArbeitsphysiologieUniversität DortmundDortmundFederal Republic of Germany
  2. 2.Institut für PhysiologieRuhr-Universität BochumBochumFederal Republic of Germany

Personalised recommendations