Skip to main content

The Production and Fate of Reduced Volatile Species from Oxic Environments

  • Conference paper

Part of the book series: Dahlem Workshop Reports Physical and Chemical Sciences Research Report ((DAHLEM PHYSICAL,volume 4))

Abstract

The oxic part of the biosphere includes the surface, the top soil, and the upper regions of lakes and oceans. It is the site of a surprisingly large proportion of the total biosynthesis of reduced molecular species. The production under oxic conditions of reduced compounds of the principal groups of elements used by the biota is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae, M.O. 1980. Dimethylsulfoxide in marine and freshwaters. Limnol. Oceanogr. 25: 1054–1063.

    Article  CAS  Google Scholar 

  2. Ayers, G.P., and Gras, J.L. 1980. Ammonia gas concentrations over the Southern Ocean. Nature 284: 539–540.

    Article  CAS  Google Scholar 

  3. Barnard, W.R.; Andreae, M.O.; Watkins, W.E.; Bingemer, H.; and Georgii, H.-W. 1982. The flux of dimethylsulfide from the oceans to the atmosphere. J. Geophys. Res., in press.

    Google Scholar 

  4. Bottger, A.; Ehhalt, D.H.; and Gravenhorst, G. 1980. In Atmosphärische Kreisläufe von Stickoxyden und Ammoniak, Report July-1558, Institut für Chemie 3, Kernforschungsanlage Jülich, FRG.

    Google Scholar 

  5. Brinckman, F.E., and Beilama, J.M. 1978. In Organometals and Organometalloids Occurrence and Fate in the Environment. Washington, DC: American Chemical Society.

    Google Scholar 

  6. Challenger, F. 1951. Biological methlyation. Adv. Enzymol. 12: 429–491.

    CAS  Google Scholar 

  7. Chameides, W. L., and Davis, D.D. 1980. Iodine: its possible role in tropospheric photochemistry. J. Geophys. Res. 85: 2–25.

    Article  Google Scholar 

  8. Cox, R.A., and Sandalls, F.J. 1974. The photo-oxidation of hydrogen sulphide and dimethyl sulphide in air. Atmos. Env. 8: 1269–1281.

    Article  CAS  Google Scholar 

  9. Crutzen, P.J. 1982. In The Interaction of Biogeochemical Cycles, SCOPE, in press.

    Google Scholar 

  10. Ehhalt, D.H., and Schmidt, U. 1978. Sources and sinks of atmospheric methane. Pageoph. 116: 452–464.

    Article  CAS  Google Scholar 

  11. Ishida, Y. 1969. Memoirs of the College of Agriculture, Kyoto University, vol. 94, pp. 48–82.

    Google Scholar 

  12. Liss, P.S., and Slater, P.G. 1974. Flux of gases across the air-sea interface. Nature 247: 181–184.

    Article  CAS  Google Scholar 

  13. Lovelock, J.E. 1975. Natural halocarbons in the air and in the sea. Nature 256: 193–194.

    Article  PubMed  CAS  Google Scholar 

  14. Nguyen, B.C.; Gaudry, A.; Bonsang, B.; and Lambert, G. 1978. Reevaluation of the role of dimethyl sulphide to the sulphur budget. Nature 275: 637–639.

    Article  Google Scholar 

  15. Seiler, W., and Crutzen, P.J. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climate Change 2: 207–247.

    Article  CAS  Google Scholar 

  16. Söderland, R., and Svensson, B.H. 1976. The global nitrogen cycle. Ecol. Bull. (Stockholm) 22: 23–73.

    Google Scholar 

  17. Taylor, G.S.; Baker, M.B.; and Charlson, R.J. 1982. In The Interaction of Biogeochemical Cycles, SCOPE, in press.

    Google Scholar 

  18. Tjepkema, J.D.; Cartica, R.J.; and Hemond, H.F. 1981. Atmospheric concentration of ammonia in Massachusetts and deposition on vegetation. Nature 294: 445–446.

    Article  CAS  Google Scholar 

  19. Watson, A.J. 1978. Consequences for the Biosphere of Grassland and Forest Fires. Ph.D. Thesis, University of Reading (UK).

    Google Scholar 

  20. Wilson, E.O. 1974. Sociobiology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  21. Zafiriou, O.C. 1975. Reaction of methyl halides with seawater and marine aerosols. J. Mar. Res. 33: 75–81.

    CAS  Google Scholar 

  22. Zimmerman, P.R.; Chatfield, R.B.; Fishman, J.; Crutzen, P.J.; and Hanst, P.L. 1978. Estimates on the production of Co and H2 from the oxidation of hydrocarbon emissions from vegetation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. D. Goldberg

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Lovelock, J.E. (1982). The Production and Fate of Reduced Volatile Species from Oxic Environments. In: Goldberg, E.D. (eds) Atmospheric Chemistry. Dahlem Workshop Reports Physical and Chemical Sciences Research Report, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68638-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68638-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68640-5

  • Online ISBN: 978-3-642-68638-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics