Advertisement

Co-evolution between Hosts and Infectious Disease Agents and its Effects on Virulence

  • A. C. Allison
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 25)

Abstract

Protozoan parasites have evolved several mechanisms to overcome vertebrate host defenses. These include intracellular location, antigenic variation, antigen-specific immunosuppression, and nonspecific immunosuppression. In response to the challenge of infectious diseases, mammalian hosts have developed several mechanisms for limiting parasitic infections. Some of these are conventional immune responses, involving the formation of specific antibodies, T-lymphocytes that can kill infected cells, and T-lymphocytes that can activate macrophages in such a way that they limit the multiplication of parasites. Other mechanisms of resistance have also evolved, including inherited variations in hemoglobin and erythrocyte enzymes and structure that can limit their capacity to support parasite replication. As a result of selection through parasitic disease, stable polymorphisms have developed.

The transmission of parasites by arthropods introduces a further level of complexity and necessity for co-evolution of the parasites and both hosts, ensuring the survival of all of them in nature. When hosts and parasites have lived together for a long time, as in the case of African parasites and wild animals, the hosts have developed efficient mechanisms of resistance and the infections are of low virulence. When the time of coexistence is intermediate, as in the case of indigenous domestic livestock, the same parasites produce infections of intermediate virulence, whereas in newly introduced hosts they produce highly virulent infections. Such graded responses strongly suggest that co-evolution can result in attenuated infections.

Keywords

Falciparum Malaria Antigenic Variation Vertebrate Host Trypanosoma Brucei Rodent Malaria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Allison, A.C. 1954. The distribution of the sickle-cell trait in East Africa and elsewhere, and its apparent relationship to the incidence of subtertian malaria. Trans. R. Soc. Trop. Med. Hyg. 48: 312–338.PubMedCrossRefGoogle Scholar
  2. (2).
    Allison, A.C. 1954. Protection afforded by the sickle-cell trait against subtertian malarial infection. Brit. Med. J. 1: 290–294.PubMedCrossRefGoogle Scholar
  3. (3).
    Allison, A.C. 1954. Notes on sickle-cell polymorphism. Ann. Hum. Genet. 19: 39–51.PubMedCrossRefGoogle Scholar
  4. (4).
    Allison, A.C. 1960. Glucose-6-phosphate dehydrogenase deficiency in red blood cells of East Africans. Nature 186: 531–532.PubMedCrossRefGoogle Scholar
  5. (5).
    Allison, A.C. 1964. Polymorphism and natural selection in human populations. Cold Spr. Harb. Symp. Quant. Biol. 29: 137–149.Google Scholar
  6. (6).
    Allison, A.C. 1981. Cellular immune response in theileriosis. In Advances in the Control of Theileriosis, eds. A.D. Irvin, M.P. Cunningham, and A.S. Young. The Hague: M. Nyhoff.Google Scholar
  7. (7).
    Allison, A.C., and Clyde, D.F. 1961. Malaria in African children with deficient erythrocyte glucose-6-phos-phate dehydrogenase. Brit. Med. J. 1: 1366–1348.CrossRefGoogle Scholar
  8. (8).
    Ashcroft, M.T.; Burtt, E.; and Fairburn, H. 1959. The experimental infection of some African wild animals with Trypanosoma rhodesiense, T. Brucei and T. congolense. Ann. Trop. Med. Parasitol. 53: 147–161.PubMedGoogle Scholar
  9. (9).
    Beaven, G.H.; Ellis, M.J.; and White, J.C. 1961. Studies on human foetal haemoglobin. III. The hereditary haemoglobinopathies and thalassaemias. Brit. J. Haematol. 7: 169–186.CrossRefGoogle Scholar
  10. (10).
    Bienzle, U.; Ayeni, O.; Lucas, A.O.; and Luzzatto, L. 1972. Glucose-6-phosphate dehydrogenase and malaria. Greater resistance of females heterozygous for enzyme deficiency and males with non-deficient variant. Lancet i: 107–110.CrossRefGoogle Scholar
  11. (11).
    Bodmer, W.F. 1972. Evolutionary significance of the H-LA system. Nature 237: 139–145.PubMedCrossRefGoogle Scholar
  12. (12).
    Brown, K.N. 1977. Antigenic variation. In Immunity in Parasitic Diseases, vol. 72, pp. 59–70. Paris: Colloque Inserm.Google Scholar
  13. (13).
    Cavalli-Sforza, L., and Bodmer, W.F. 1971. The Genetics of Human Populations. San Francisco: Freeman.Google Scholar
  14. (14).
    Clark, I.A., and Allison, A.C. 1974. Babesia microti and Plasmodium berghei yoelii infections in nude mice. Nature 252: 328–329.PubMedCrossRefGoogle Scholar
  15. (15).
    Coatney, G.R.; Collins, W.E.; McWarren, W.; and Contacos, P.G. 1977. The Primate Malarias, pp. 1–366. Washington, DC: US Government Printing Office.Google Scholar
  16. (16).
    Cohen, S.; McGregor, I.A.; and Carrington, S. 1961. Gamma-globulin and acquired immunity to human malaria. Nature 192: 733–737.PubMedCrossRefGoogle Scholar
  17. (17).
    Cross, G.A.M. 1975. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71: 393–417.PubMedCrossRefGoogle Scholar
  18. (18).
    Eaton, J.W.; Eckman, J.R.; Berger, E.; and Jacob, H.S. 1976. Suppression of malaria infection by oxidant-sensitive host erythrocytes. Nature 264: 758–760.PubMedCrossRefGoogle Scholar
  19. (19).
    Etkin, N.L., and Eaton, J.W. 1975. Malaria-induced erythrocyte oxidant sensitivity. In Erythrocyte Structure and Function, ed. G.J. Brewer, pp. 219–234. New York: A.R. Liss, Inc.Google Scholar
  20. (20).
    Eugui, E.M., and Allison, A.C. 1980. Differences in susceptibility of various mouse strains to haemoprotozoan infections: possible correlation with natural killer activity. Parasite Immunol. 2: 277–299.PubMedCrossRefGoogle Scholar
  21. (21).
    Eyles, D.E.; Laing, A.B.G.; McWarren, W.; and Sandosham, A.A. 1962. Malaria parasites in Malayan leaf monkeys of the genus Presbytis. Med. J. Malaya 17: 85–86.Google Scholar
  22. (22).
    Freeman, R.R.; Trejdosiewicz, A.G.; and Cross, G.A.M. 1980. Protective monoclonal antibodies recognizing stage-specific merozoite antigens of a rodent malarial parasite. Nature 284: 366–368.PubMedCrossRefGoogle Scholar
  23. (23).
    Friedman, M.J. 1978. Erythrocytic mechanism of sickle-cell resistance to malaria. Proc. Natl. Acad. Sci. USA 75: 1994–1997.PubMedCrossRefGoogle Scholar
  24. (24).
    Friedman, M.J. 1979. Oxidant damage mediates variant red-cell resistance to malaria. Nature 280: 245–247.PubMedCrossRefGoogle Scholar
  25. (25).
    Friedman, M.J.; Roth, E.F.; Nagel, R.L.; and Trager, W. 1979. Plasmodium falciparum: Physiological interactions with the human sickle cell. Exp. Parasitol. 47: 73–80.PubMedCrossRefGoogle Scholar
  26. (26).
    Friedman, M.J.; Roth, E.F.; Nagel, R.L.; and Trager, W. 1979. The role of hemoglobins C, S, and NBALT in the inhibition of malaria parasite development in vitro. Am. J. Trop. Med. Hyg. 28: 777–780.PubMedGoogle Scholar
  27. (27).
    Gilles, H.M.; Fletcher, K.A.; Hendrickse, R.G.; Lindner, R.; Reddy, S.; and Allan, N. 1967. Glucose-6-phosphate dehydrogenase deficiency, sickling and malaria in African children in South Western Nigeria. Lancet i: 138–140.CrossRefGoogle Scholar
  28. (28).
    Götz, P.; Boman, A.; and Boman, H.G. 1981. Interactions between insect immunity and an insect-pathogenic nematode with symbiotic bacteria. Proc. R. Soc. Lond. B 212: 333–350.CrossRefGoogle Scholar
  29. (29).
    Griffin, L., and Allonby, E.W. 1979. Trypanotolerance in breeds of sheep and goats with an experimental infection of Trypanosoma congolense. Vet. Parasitol. 5: 97–105.CrossRefGoogle Scholar
  30. (30).
    Grosskinsky, C.M., and Askonas, B.A. 1981. Macrophages as primary target cells and mediators of immune dysfunction in African trypanosomiasis. Infect. Immun. 33: 149–155.PubMedGoogle Scholar
  31. (31).
    Grun, J.I., and Weidanz, W.P. 1981. Immunity to Plasmodium chabaudi adami in the B cell deficient mouse. Nature 290: 143–145.PubMedCrossRefGoogle Scholar
  32. (32).
    Hitzeroth, H.W., and Bender, K. 1980. Erythrocyte G-6-PD and 6-PGD genetic polymorphism in Southern African Negroes, with a note on G-6-PD and the malaria hypothesis. Hum. Genet. 54: 233–242.PubMedCrossRefGoogle Scholar
  33. (33).
    Hoeijmakers, J.H.J.; Fraseh, A.C.C.; Bernards, A.; Borst, P.; and Cross, G.A.M. 1980. Novel expression linked copies of the genes for variant surface antigens in trypanosomes. Nature 284: 78–80.PubMedCrossRefGoogle Scholar
  34. (34).
    Holder, A.A., and Freeman, R.R. 1981. Immunization against blood-stage rodent malaria using purified parasite antigens. Nature 294: 361–364.PubMedCrossRefGoogle Scholar
  35. (35).
    Irvin, A.D.; Cunningham, M.P.; and Young, A.S., eds. 1981. Advances in the Control of Theileriosis. The Hague: Martinus Nijhoff.Google Scholar
  36. (36).
    Kidson, C., and Gorman, F.J. 1962. A challenge to the concept of selection by malaria in glucose-6-phosphate dehydrogenase deficiency. Nature 196: 49–51.PubMedCrossRefGoogle Scholar
  37. (37).
    Livingstone, F.B. 1971. Malaria and human polymorphisms. Ann. Rev. Genet. 5: 33–64.CrossRefGoogle Scholar
  38. (38).
    Luse, A., and Miller, L.H. 1971. Plasmodium falciparum malaria: ultrastructure of parasitized erythrocytes in cardiac vessels. Am. J. Trop. Med. Hyg. 20: 650–655.Google Scholar
  39. (39).
    Luzzatto, L. 1974. Genetic factors in malaria. Bull. WHO 50: 195–202.PubMedGoogle Scholar
  40. (40).
    Luzzatto, L.; Nwachuku-Jarrett, E.S.; and Reddy, S. 1970. Increased sickling of parasitized erythrocytes as mechanism of resistance against malaria in the sickle-cell trait. Lancet i: 319–322.CrossRefGoogle Scholar
  41. (41).
    Martin, S.K.; Miller, L.H.; Alling, D.; Okoye, V.C.; Esan, G.J.F.; Osunkoya, B.O.; and Deane, M. 1979. Severe malaria and glucose-6-phosphate dehydrogenase deficiency: a reappraisal of the malaria G-6-PD hypothesis. Lancet i: 524–526.CrossRefGoogle Scholar
  42. (42).
    Miller, L.H.; Aikawa, M.; Johnson, J.G.; and Shiroishi, T. 1979. Interaction between cytochalasin B-treated malarial parasites and erythrocytes. Attachment and junction formation. J. Exp. Med. 149: 172–184.PubMedCrossRefGoogle Scholar
  43. (43).
    Miller, L.H.; Mason, S.J.; Dvorak, J.A.; McGinnis, M.H.; and Rothman, I.K. 1975. Erythrocyte receptors for (Plasmodium knowlesi) malaria: The Duffy blood group determinants. Science 189: 561–563.PubMedCrossRefGoogle Scholar
  44. (44).
    Miller, L.H.; McGinniss, M.H.; Holland, P.V.; and Sigmon, P. 1978. The Duffy blood group phenotype in American blacks infected with Plasmodium vivax in Vietnam. Am. J. Trop. Med. Hyg. 27: 1069–1072.PubMedGoogle Scholar
  45. (45).
    Moll, G.; Lohding, A.; and Young, A.S. 1981. The epidemiology of theileriosis in the trans-Mara division, Kenya. In Advances in the Control of Theileriosis, eds. A.D. Irvin, M.P. Cunningham, and A.S. Young, pp. 56–59. The Hague: Martinus Nyhoff.CrossRefGoogle Scholar
  46. (46).
    Motulsky, A.G. 1960. Metabolic polymorphisms and the role of infectious diseases in human evolution. Hum. Biol. 32: 28–62.PubMedGoogle Scholar
  47. (47).
    Mourant, A.E.; Kopec, A.C.; and Domaniewska-Sobczak, K. 1976. The Distribution of the Human Blood Groups and Other Polymorphisms, 2nd ed. Oxford University Press.Google Scholar
  48. (48).
    Murray, M.; Morrison, W.I.; Murray, P.K.; Clifford, J.D.; and Trail, J.C.M. 1979. Trypanotolerance — a review. Wld. Anim. Rev. 31: 2–12.Google Scholar
  49. (49).
    Nagel, R.L.; Raventos-Suarez, C.; Fabry, M.E.; Tanowitz, H.; Sicard, D.; and Labie, D. 1981. Impairment of the growth of Plasmodium falciparum in HbEE erythrocytes. J. Clin. Invest. 68: 303–305.PubMedCrossRefGoogle Scholar
  50. (50).
    Pasvol, G.; Weatherall, D.J.; and Wilson, R.J.M. 1977. Effects of foetal haemoglobin on susceptibility of red cells to Plasmodium falciparum. Nature 270: 171–173.PubMedCrossRefGoogle Scholar
  51. (51).
    Pasvol, G.; Weatherall, D.J.; and Wilson, R.J.M. 1978. Cellular mechanism for the protective effect of hemoglobin S against P. falciparum malaria. Nature 274: 701–703.PubMedCrossRefGoogle Scholar
  52. (52).
    Pays, E.; Van Meiervenne, N.; Le Ray, D.; and Steinert, M. 1981. Gene duplication and transposition linked to antigenic variation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 78: 2673–2677.PubMedCrossRefGoogle Scholar
  53. (53).
    Potocnjak, P.; Yoshida, N.; Nussenzweig, R.S.; and Nussenzweig, V. 1980. Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb 44) protect mice against malarial infections. J. Exp. Med. 151: 1504–1513.PubMedCrossRefGoogle Scholar
  54. (54).
    Quin, T.C., and Wyler, P.J. 1979. Intravascular clearance of parasitized erythrocytes in rodent malaria. J. Clin. Invest. 63: 1187–1194.CrossRefGoogle Scholar
  55. (55).
    Rank, R.G., and Weidanz, W.P. 1976. Nonsterilizing immunity in avian malaria: an antibody-independent phenomenon. Proc. Soc. Exp. Biol. Med. 151: 257–259.PubMedGoogle Scholar
  56. (56).
    Roberts, D.W., and Weidanz, W.P. 1979. T-cell immunity to malaria in the B-cell deficient mouse. Am. J. Trop. Med. Hyg. 28: 1–3.PubMedGoogle Scholar
  57. (57).
    Steinert, R.; Hultmark, D.; Engström, A.; Bennich, H.; and Boman, H. 1951. Sequence and specificity of two anti-bacterial proteins involved in insect immunity. Nature 292: 246–248.CrossRefGoogle Scholar
  58. (58).
    Warren, W.Mc.C., and Collins, W.E. 1981. Vector-parasite interactions and the epidemiology of malaria. Parasitological Topics, a Presentation Volume to P.C.C. Carnham, F.R.S. on the Occasion of his 80th Birthday. Society of Protozoologists, Special Publication No. 1, pp. 266–274.Google Scholar
  59. (59).
    Weinbaum, F.I.; Evans, C.B.; and Tigelaar, R.E. 1976. Immunity to Plasmodium berghei yoelii in mice. I. The course of infection in T-cell and B-cell deficient mice. J. Immunol. 117: 1999–2005.PubMedGoogle Scholar
  60. (60).
    Wilson, R.J.M. 1977. Circulating antigens of parasites. In Immunity in Parasitic Diseases, vol.72, pp. 87–101. Paris: Colloque Inserm.Google Scholar
  61. (61).
    Young, A.S.; Brown, C.G.D.; Burridge, M.J.; Grootenhuis, J.G.; Kanhai, G.K.; Purnell, R.E.; and Stagg, D.A. 1978. The incidence of theilerial parasites in East African buffalo (Syncerus caffer). Tropenmed. Parasit. 29: 281–288.Google Scholar
  62. (62).
    Zinkernagel, R.M. 1979. Review: Cellular immune responses to intracellular parasites: role of the major histocompatability gene complex and thymus in determining immune responsiveness and susceptibility to disease. Parasite Immunol. I: 91–109.Google Scholar

Copyright information

© D. Bernhard, Dahlem Konferenzen, Berlin 1982

Authors and Affiliations

  • A. C. Allison
    • 1
  1. 1.Institute of Biological SciencesSyntex ResearchPalo AltoUSA

Personalised recommendations