Restoration of Function

Group Report
  • M. E. Raichle
  • D. Y. von Cramon
  • W. E. Crill
  • H. Flohr
  • E. Frank
  • H.-J. Freund
  • K.-A. Hossmann
  • L. M. Mendell
  • M. Mishkin
  • B. S. NasholdJr.
  • W. Precht
  • J. Zihl
Conference paper
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 24)

Abstract

Complete restoration of function after injury to the human central nervous system (CNS) could be achieved if nerve cells and their processes sprouted appropriately and developed functionally appropriate connections. Because such a sequence of events does not seem to occur in the adult human CNS (see Frank, this volume), it is of obvious importance to understand the reason and what can be done to effect its occurrence. At the same time, other approaches to the problem of restoring function cannot be neglected.

Keywords

Permeability Depression Ischemia Lactate Retina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Adametz, J.H. 1959. Rate of recovery of functioning in cats with rostral reticular lesions. J. Neurosurg. 16: 85–98.PubMedCrossRefGoogle Scholar
  2. (2).
    Agardh, C.-D.; Kalimo, H.; Olsson, Y.; and Siesjo, B.K. 19 80. Hypoglycemic brain injury. I. Metabolic and light microscopic findings in rat cerebral cortex during profound insulin-induced hypoglycemia and in the recovery period following glucose administration. Acta Neuropathol (Berlin) 50: 31–41.CrossRefGoogle Scholar
  3. (3).
    Bechterew, W. von. 1883. Ergebnisse der Durchschneidung der N. acusticen nebst Erorterung der Bedeutung der semi-circularem Kanale fur das Korpergleichgewicht. Pfliigers Arch. Ges. Physiol. 30: 312–347.Google Scholar
  4. (4).
    Cowey, A. 1967. Perimetric study of visual field defects in monkeys after cortical and retinal ablations. Q. J. Exp. Psychol. 19: 232–245.PubMedCrossRefGoogle Scholar
  5. (5).
    Cowey, A., and Weiskrantz, L. 1963. A perimetric study of visual field defects in monkeys. Q. J. Exp. Psychol. 15: 91–115.CrossRefGoogle Scholar
  6. (6).
    Dieringer, N., and Precht, W. 1981. Functional restitution of static and dynamic reflexes in frog after hemi-labyrinthectomy. In Lesion-induced Neuronal Plasticity in Sensorimotor Systems, eds. H. Flohr and W. Precht, pp. 184–196. New York: Springer-Verlag.Google Scholar
  7. (7).
    Eidelberg, E., and Stein, D.G. 1974. Functional recovery after lesions of the nervous system. Neurosci. Res. Prog. Bull. 12: 191–303.Google Scholar
  8. (8).
    Farber, J.L.; Chien, K.R.; and Mittnacht, S., Jr. 1981. The pathogenesis of irreversible cell injury in ischemia. Am. J. Pathol. 102: 271–281.PubMedGoogle Scholar
  9. (9).
    Finger, S., and Stein, D.G. 1982. Brain Damage and Recovery: Historical and Contemporary Issues. New York: Academic Press.Google Scholar
  10. (10).
    Flamm, E.S.; Demopoulous, H.B.; Seligman, M.L.; Poser, R.G.; and Ransohoff, J. 1978. Free radicals in cerebral ischemia. Stroke 9: 445–447.PubMedCrossRefGoogle Scholar
  11. (11).
    Flohr, H.; Bienhold, H.; Abeln, W.; and Macskovic, I. 1981. Concepts of vestibular compensation. In Lesion-induced Neuronal Plasticity in Sensorimotor Systems, eds. H. Flohr and W. Precht, pp. 153–172. Berlin: Springer-Verlag.Google Scholar
  12. (12).
    Goldberger, M.E. 1981. The role sprouting might play during the recovery of motor function. In Lesion-induced Neuronal Plasticity in Sensorimotor Systems, eds. H. Flohr and W. Precht, pp. 130–140. Berlin: Springer-Verlag.Google Scholar
  13. (13).
    Hossmann, K.-A. 1977. Total ischemia of the brain. In Brain and Heart Infarct, eds. K.J. Zulch et al., pp. 107– 122. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  14. (14).
    Jackson, J.H. 1873. Lectures on the diagnosis of tumours of the brain. Med. Times Gazette 2: 139.Google Scholar
  15. (15).
    Mohler, C.W., and Wurtz, R.H. 1977. Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. J. Neurophysiol. 40: 74–94.PubMedGoogle Scholar
  16. (16).
    Meyers, R.E. 1979. A unitary theory of causation of anoxic and hyposic brain pathology. In Cerebral Hypoxia and Its Consequences, eds. S. Fahn, J.N. Davis, and L.P. Rowland, pp. 195–213. New York: Raven Press.Google Scholar
  17. (17).
    Nemoto, E.M.; Hossmann, K.-A.; and Cooper, H.K. 1981. Post-ischemic hypermetabolism in cat brain. Stroke 12: 666–676.PubMedCrossRefGoogle Scholar
  18. (18).
    Precht, W.; Maioli, C.; Dieringer, N.; and Cochran, S. 1981. Mechanisms of compensation of the vestibule-ocular reflex after vestibular neurotomy. In Lesion-induced Neuronal Plasticity in Sensorimotor Systems, eds. H. Flohr and W. Precht, pp. 221–230. New York: Springer-Verlag.Google Scholar
  19. (19).
    Siesjo, B.K. 1981. Cell damage in the brain: a speculative synthesis. J. Cereb. Blood Flow Metab. 1: 155– 158.Google Scholar
  20. (20).
    Zihl, J., and von Cramon, D. 1979. Restitution of visual function in patients with cerebral blindness. J. Neurol. Neurosurg. Psychiat. 42: 312–322.PubMedCrossRefGoogle Scholar
  21. (21).
    Zihl, J. 1981. Recovery of visual functions in patients with cerebral blindness. Effect of specific practice with saccadic localization. Exp. Brain Res. 44: 159–169.PubMedCrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1982

Authors and Affiliations

  • M. E. Raichle
  • D. Y. von Cramon
  • W. E. Crill
  • H. Flohr
  • E. Frank
  • H.-J. Freund
  • K.-A. Hossmann
  • L. M. Mendell
  • M. Mishkin
  • B. S. NasholdJr.
  • W. Precht
  • J. Zihl

There are no affiliations available

Personalised recommendations