Skip to main content

Early Responses to Neural Injury

Group Report

  • Conference paper
Book cover Repair and Regeneration of the Nervous System

Abstract

This group discussion deals with responses to injury at the neuronal level, with particular emphasis on injury induced by axotomy. It considers responses both in the axotomized neurons themselves and in surrounding or connected uninjured neurons in animals as diverse as leeches and man. The responses observed are considered in the light of what is now known about cellular mechanisms involved in the normal development and maintenance of neurons, in an attempt to distinguish which events are a consequence of disruption of a normal cellular process and which events are specifically concerned with attempts at regeneration. The aim is to understand more about those cellular mechanisms underlying regeneration and how they may be enhanced or promoted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, C.E.; Bisby, M.A.; Cooper, E.; and Diamond, J. 1973. Evidence that axoplasmic transport of trophic factors is involved in the regulation of peripheral nerve fields in salamanders. J. Physiol. 234: 449–464.

    PubMed  CAS  Google Scholar 

  2. Aldskogius, H.; Barron, K.D.; and Regal, R. 1980. Axon reaction in dorsal motor vagal and hypoglossal neurons of the adult rat. Light microscopy and RNA-cytochemistry. J. comp. Neur. 193: 165–177.

    Article  PubMed  CAS  Google Scholar 

  3. Barker, D., and Ip, M.C. 1966. Sprouting and degeneration of mammalian motor axons in normal and deafferented skeletal muscles. Proc. Roy. Soc. Lond. B 163: 538–554.

    Article  CAS  Google Scholar 

  4. Barron, K.D.; Dentinger, P.; Nelson, R.; and Mincy, J. 19 75. Ultrastructure of axonal reaction in red nucleus of cat. J. Neuropath, exp. Neurol. 34: 222–248.

    Google Scholar 

  5. Blackshaw, S.E.; Nicholls, J.G.? and Parnas, I. 1982. Expanded receptive fields of cutaneous mechanoreceptor cells after single neurone deletion in leech central nervous system. J. Physiol, in press.

    Google Scholar 

  6. Blinzinger, K.H., and Kreutzberg, G.W. 1968. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z. Zellforsch. 85: 145–157.

    Article  PubMed  CAS  Google Scholar 

  7. Bray, D. 1982. Filopodial contraction and growth cone guidance. In Cell Behaviour, eds. R. Bellairs, A. Curtis, and G. Dunn. Cambridge: Cambridge University Press.

    Google Scholar 

  8. Bray, D., and Gilbert, D. 1981. Cytoskeletal elements in neurons. Ann. Rev. Neurosci. 4: 505–523.

    Article  PubMed  CAS  Google Scholar 

  9. Bregman, B.S., and Cruce, W.L.R. 1980. Normal dendritic morphology of frog spinal motoneurons; a Golgi study. J. comp. Neurol. 193: 1035–1045.

    Article  PubMed  CAS  Google Scholar 

  10. Brown, M.C., and Holland, R.L. 1979. A central role for denervated tissues in causing nerve sprouting. Nature 282 724–726.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, M.C.; Holland, R.L.; and Hopkins, W.G. 1981. Motor nerve sprouting. Ann. Rev. Neurosci. 4: 17–42.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, M.C.; Holland, R.L.; and Ironton, R. 1980. Nodal and terminal sprouting from motor nerves in fast and slow muscles of the mouse. J. Physiol. 306: 493–510.

    PubMed  CAS  Google Scholar 

  13. Brown, M.C., and Ironton, R. 1977. Motor neurone sprouting induced by prolonged tetrodotoxin block of nerve action potentials. Nature 265: 459–461.

    Article  PubMed  CAS  Google Scholar 

  14. Carmel, P.W., and Stein, B.M. 1969. Cell changes in sensory ganglia following proximal and distal nerve section in the monkey. J. comp. Neur. 135: 145–166.

    Article  PubMed  CAS  Google Scholar 

  15. Courtenay, K., and Roper, S. 1976. Sprouting of synapses after partial denervation of frog cardiac ganglion. Nature 259: 317–319.

    Article  Google Scholar 

  16. Cova. J.L.; Barron, K.D.; and Aldskogius, H. 1978. Kitten glial cell numbers and incorporation of 3H leucine in response to axotomy. Anat. Rec. 190: 370A–371A.

    Google Scholar 

  17. Dentinger, M.P.; Barron, K.D.; Kohberger, R.C.; and McLean, B. 1979. Cytological observations on axotomized feline Betz cells. J. Neuropathol. exp. Neurol. 38: 551– 564.

    PubMed  Google Scholar 

  18. Diamond, J.; Cooper, E.; Turner, C.; and Macintyre, L. 1976. Trophic regulation of nerve sprouting. Science 193: 371–377.

    Article  PubMed  CAS  Google Scholar 

  19. Duchen, L.W., and Strich, S.J. 1968. The effects of botulinum toxin on the pattern of innervation of skeletal muscle of the mouse. Q. J. Exp. Physiol. 53: 84–89.

    CAS  Google Scholar 

  20. Edds, M.V. 1953. Collateral nerve regeneration. Q. Rev. Biol. 28: 260–276.

    Article  PubMed  Google Scholar 

  21. Egan, D.A.; Flumerfelt, B.A.; and Gwyn, D.G. 1977. Axon reaction in the red nucleus of the rat. Perikaryal volume changes and the time course of chromatolysis following cervical and thoracic lesions. Acta neuropath. 37: 13–19.

    Article  PubMed  CAS  Google Scholar 

  22. Farel, P.B. 1978. Reflex activity of regenerating frog spinal motoneurones. Brain Res. 158: 331–341.

    Article  PubMed  CAS  Google Scholar 

  23. Feldman, E.L.; Axelrod, D.; Schwartz, M.; Heacock, A.M.; and Agranoff, B.W. 1981. Studies on the localization of newly added membrane in growing neurites. J. Neurobiol. 12: 591–598.

    Article  PubMed  CAS  Google Scholar 

  24. Goldring, J.M.; Kuno, M.; Nunez, R.; and Snider, W.D. 1980. Reaction of synapses on motoneurones to section and restoration of peripheral sensory connections in the cat. J. Physiol. 309: 185–198.

    PubMed  CAS  Google Scholar 

  25. Griffin, J.W.; Price, D.L.; Drachman, D.B.; and Morris, J. 1981. Incorporation of axonally transported glyco–proteins into axolemma during nerve regeneration. J. Cell Biol. 88: 205–214.

    Article  PubMed  CAS  Google Scholar 

  26. Gundersen, R.W., and Barrett, J.N. 1980. Characteriza–tion of the turning response of dorsal root neurites towards nerve growth factor. J. Cell Biol. 87: 546–554.

    Article  PubMed  CAS  Google Scholar 

  27. Herrera, A.A., and Grinnell, A.D. 1981. Contralateral denervation causes enhanced transmitter release from frog motor terminals. Nature 291: 495–497.

    Article  PubMed  CAS  Google Scholar 

  28. Holland, R.L., and Brown, M.C. 1980. Postsynaptic trans–mission block can cause motor nerve terminal sprouting. Science 207: 649–651.

    Article  PubMed  CAS  Google Scholar 

  29. Kalderon, N. 1979. Migration of Schwann cells and wrapping of neurites in vitro: a function of protease activity (plasmin) in the growth medium. Proc. Natl. Acad. Sci. USA 76: 5992–5996.

    Article  PubMed  CAS  Google Scholar 

  30. Kauffmann, F.C.; Ross, R.A.; and Reis, D.J. 1976. Reversible effects of axotomy on locus coeruleus glucose-6-P dehydrogenase. Trans. Am. Soc. Neurochem. 7: 86.

    Google Scholar 

  31. Kreutzberg, G.W. 1966. Autoradiographische Untersuchung liber die Beteiligung von Gliazellen an der axonalen Reak– tion im Facialiskern der Ratte. Acta neuropath. 7: 149– 161.

    Article  Google Scholar 

  32. Krystosek, A., and Seeds, N.W. 1981. Plasminogen activator release at the neuronal growth cone. Science 213: 1532–1534.

    Article  PubMed  CAS  Google Scholar 

  33. Kuno, M., and Llinas, R. 1970. Alterations of synaptic action in chromatolysed motoneurones of the cat. J. Physiol. 210: 823–838.

    PubMed  CAS  Google Scholar 

  34. Lasek, R.J. 1968. Axoplasmic transport in cat dorsal root ganglion cells: as studied with L–leucine-H3. Brain Res. 7: 360–377.

    Article  PubMed  CAS  Google Scholar 

  35. Lasek, R.J., and Hoffman, P.N. 1976. The neuronal cyto-skeleton, axonal transport and axonal growth. In Cell Motility. Microtubules and Related Proteins, eds. R. Goldman, T. Pollard, and J. Rosenbaum, Book C, pp. 1021– 1049. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  36. Lavelle, A., and Lavelle, F.W. 1958. Neuronal swelling and chromatolysis as influenced by the state of cell development. Am. J. Anat. 102: 219–241.

    Article  PubMed  CAS  Google Scholar 

  37. Letourneau, P.C. 1975. Cell-to-substratum adhesion and guidance of axonal elongation. Dev. Biol. 44: 77–91.

    Article  PubMed  CAS  Google Scholar 

  38. Letourneau, P.C. 1978. Chemotactic response of nerve fiber elongation to nerve growth factor. Dev. Biol. 66; 183–196.

    Article  PubMed  CAS  Google Scholar 

  39. Letourneau, P.C. 1981. Immunocytochemical evidence for colocalization in neurite growth cones of actin and myosin and their relationship to cell–substratum adhesions. Dev. Biol. 85: 113–122.

    Article  PubMed  CAS  Google Scholar 

  40. Lieberman, A.R. 1971. The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int. Rev. Neurobiol. 14: 49–124.

    Article  PubMed  CAS  Google Scholar 

  41. Lieberman, A.R. 1974. Some factors affecting retrograde neuronal responses to axonal lesions. In Essays on the Nervous System, a Festschrift for Prof. J.Z. Young, eds. R. Bellairs and E.G. Gray, pp. 71–105. Oxford: Clarendon Press.

    Google Scholar 

  42. Llinas, R. 1979. The role of calcium in neuronal function. In The Neurosciences Fourth Study Program, eds. F.O. Schmitt and F.G. Worden, pp. 555–571. Cambridge, MA: MIT Press.

    Google Scholar 

  43. Meiri, H.; Spira, M.E.; and Parnas, I. 1981. Membrane conductance and action potential of a regenerating axonal tip. Science 211: 709–712.

    Article  PubMed  CAS  Google Scholar 

  44. Murray, J.G., and Thompson, J.W. 1957. The occurrence and function of collateral sprouting in the sympathetic nervous system of the cat. J. Physiol. 135: 133–162.

    PubMed  CAS  Google Scholar 

  45. Nathaniel, E.J.H., and Nathaniel, D.R. 1973. Electron microscopic studies of spinal ganglion cells following crushing of dorsal roots in adult rats. J. Ultrastruct. Res. 45: 168–182.

    Article  PubMed  CAS  Google Scholar 

  46. Nathaniel, E.J.H., and Nathaniel, D.R. 1973. Regeneration of dorsal root fibres into the adult rat spinal cord. Exp. Neurol. 40: 333–350.

    Article  PubMed  CAS  Google Scholar 

  47. Nelson, J., and Traub, P. 1981. Properties of Ca++- activated protease specific for the intermediate-sized protein vimentin in Ehrlich-Ascites-Tumour cells. Eur. J. Biochem. 116: 51–57.

    Article  PubMed  CAS  Google Scholar 

  48. Nicholls, J.G., and Baylor, D.A. 1968. Specific modalities and receptive fields of sensory neurons in the CNS of the leech. J. Neurophysiol. 21: 740–756.

    Google Scholar 

  49. Pannese, E. 1963. Investigations on the ultrastructural changes of the spinal ganglion neuron in the course of axon regeneration and cell hypertrophy. Z. Zellforsch. 60: 711–740.

    Article  PubMed  CAS  Google Scholar 

  50. Parnas, I., and Bowling, D. 1977. Killing of single neurones by intracellular injection of proteolytic enzymes. Nature 270; 626–628.

    Article  PubMed  CAS  Google Scholar 

  51. Pfenninger, K.H., and Bunge, R.P. 1974. Freeze-fracturing of nerve growth cones and young fibers: a study of developing plasma membrane. J. Cell Biol. 63: 180–196.

    Article  PubMed  CAS  Google Scholar 

  52. Pfenninger, K.H., and Maylie-Pfenninger, M.-F. 1981. Lectin labeling of sprouting neurons. I. Regional distribution of surface glycoconjugates. J. Cell Biol. 89: 536– 546.

    PubMed  Google Scholar 

  53. Pfenninger, K.H., and Maylie-Pfenninger, M.-F. 1981. Lectin labeling of sprouting neurons. II. Relative movement and appearance of glycoconjugates during plasmalemma expansion. J. Cell Biol. 89: 547–559.

    Article  PubMed  CAS  Google Scholar 

  54. Purves, D. 1975. Functional and structural changes of mammalian sympathetic neurones following interruption of their axons. J. Physiol. 252: 429–463.

    PubMed  CAS  Google Scholar 

  55. Raisman, G. 1969. Neural plasticity in the septal nuclei of the adult rat. Brain Res. 14: 25–48.

    Article  PubMed  CAS  Google Scholar 

  56. Rieske, E., and Kreutzberg, G.W. 1978. Neurite regeneration after cell surgery with laser microbeam irradiation. Brain Res. 148: 478–483.

    Article  PubMed  CAS  Google Scholar 

  57. Rotshenker, S. 1978. Sprouting of intact motor neurons induced by neuronal lesion in the absence of denervated muscle fibers and degenerating axons. Brain Res. 155: 354–356.

    Article  PubMed  CAS  Google Scholar 

  58. Rotshenker, S. 1979. Synapse formation in intact innervated cutaneous-pectoris muscles of the frog following denervation of the opposite muscle. J. Physiol. 292: 535–547.

    PubMed  CAS  Google Scholar 

  59. Rotshenker, S. 1981. Sprouting and synapse formation by motor axons separated from their cell bodies. Brain Res. 223: 141–145.

    Article  PubMed  CAS  Google Scholar 

  60. Rotshenker, S., and Reichert, F. 1980. Motor axon sprouting and site of synapse formation in intact innervated skeletal muscle of the frog. J. comp. Neurol. 193: 413–422.

    Article  PubMed  CAS  Google Scholar 

  61. Scharrer, E. 1933. Die Erklarung der scheinbar pathologischen Zellbilder im Nucleus supraopticus und Nucleus paraventricularis. Z. Neurol. 1 45: 462–470.

    Google Scholar 

  62. Schliwa, M.; Euteneuer, U.; Bulinski, J.C.; and Izant, J.C. 1981. Calcium lability of cytoplasmic microtubules and its modulation by microtubule-associated proteins. Proc. Natl. Acad. Sci. USA 78: 1037–1041.

    Article  PubMed  CAS  Google Scholar 

  63. Schwab, M.E.; Suda, K.; and Thoenen, H. 1979. Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J. Cell Biol. 82: 798–810.

    Article  PubMed  CAS  Google Scholar 

  64. Schwab, M.E., and Thoenen, H. 1976. Electron microscopic evidence for a trans-synaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res. 105: 213–227.

    Article  PubMed  CAS  Google Scholar 

  65. Shaw, G., and Bray, D. 1977. Movement and extension of isolated growth cones. Exp. Cell Res. 104: 55–62.

    Article  PubMed  CAS  Google Scholar 

  66. Singer, H.D., and Pollock, L. 1973. The histopathology of the nervous system in pellagra. Arch. Int. Med. 11: 565.

    Google Scholar 

  67. Slack, J.R.; Hopkins, W.G.; and Williams, M.N. 1979. Nerve sheaths and motoneurone collateral sprouting. Nature 282: 506–507.

    Article  PubMed  CAS  Google Scholar 

  68. Soller, R.W., and Erulkar, S.D. 1978. Morphological basis for crossed motoneuron interactions in frog spinal cord. Soc. Neurosci. Abstr. 4: 1069.

    Google Scholar 

  69. Spielmeyer, W. 1922. Histopathologie des Nervensystems. Berlin: Springer.

    Google Scholar 

  70. Spitzer, N.C. 1979. Ion channels in development. Ann. Rev. Neurosci. 2: 363–397.

    Article  PubMed  CAS  Google Scholar 

  71. Spooner, B.S., and Holladay, C.R. 1981. Distribution of tubulin and actin in neurites and growth cones of differentiating nerve cells. Cell Motil. 1: 167–178.

    Article  PubMed  CAS  Google Scholar 

  72. Stein, D.G.; Rosen, J.J.; and Butters, N., eds. 1974. Plasticity and Recovery of Function in the Central Nervous System. New York: Academic Press.

    Google Scholar 

  73. Steinbach, J.H. 1981. Neuromuscular junctions and a- bungarotoxin binding sites in denervated and contralateral muscles. J. Physiol. 313: 513–528.

    PubMed  CAS  Google Scholar 

  74. Stendahl, 0.1., and Stossel, T.P. 1980. Actin-binding protein amplifies actomyosin contraction and gelsolin confers calcium control on the direction of contraction. Biochem. Biophys. Res. Comm. 92: 675–681.

    Article  PubMed  CAS  Google Scholar 

  75. Tessler, A.; Autilio–Gambetti, L.; and Gambetti, P. 1980. Axonal growth during regeneration: a quantitative autoradiographic study. J. Cell Biol. 87: 197–203.

    Article  PubMed  CAS  Google Scholar 

  76. Torvik, A. 1976. Central chromatolysis and the axon reaction: a reappraisal. Neuropath. Appl. Neurobiol. 2: 423–432.

    Article  Google Scholar 

  77. Tsukahara, N., and Fujito, Y. 1976. Physiological evidence of formation of new synapses from cerebrum in the red nucleus neurons following cross-union of forelimb nerves. Brain Res. 106: 184–188.

    Article  PubMed  CAS  Google Scholar 

  78. Weakly, J.N., and Yao, Y.M. 1981. Section of lumbar spinal roots fails to induce synapse formation in contralateral, innervated sartorius muscles of the frog. Brain Res. 204: 421–423.

    Article  PubMed  CAS  Google Scholar 

  79. Wedell, G.; Guttmann, L.; and Gutmann, E. 1941. The local extension of nerve fibres into denervated areas of skin. J. Neurol. Psychiatry 4: 206–225.

    Article  Google Scholar 

Download references

Authors

Editor information

J. G. Nicholls

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Anderson, H.J. et al. (1982). Early Responses to Neural Injury. In: Nicholls, J.G. (eds) Repair and Regeneration of the Nervous System. Dahlem Workshop Reports, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68632-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68632-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68634-4

  • Online ISBN: 978-3-642-68632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics