Advertisement

4-Hydroxy-3-nitro-phenylacetyl (NP)-Specific T Cell Hybridomas

  • M. Cramer
  • R. Mierau
  • T. Takemori
  • G. Suzuki
  • T. Tada
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 100)

Abstract

T cell hybridomas are a potential source of large amounts of monoclonal, antigen-specific T cell receptor or T cell factor material. However, despite numerous efforts, this goal has not yet been achieved. There may be several reasons for this and we would like to stress three of them.

Keywords

Heavy Chain Variable Region Detergent Lysate BW5147 Cell Murine Major Histocompatibility Complex Positive Subclones 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lonai P, Puri J, Hammerling G (1981) H-2 restricted antigen binding by a hybridoma clone that produces antigen-specific helper factor. Proc Natl Acad Sci USA 78: 549–553PubMedCrossRefGoogle Scholar
  2. 2.
    Ruddle NH, Beezley B, Lewis GK, Goodman JW (1980) Antigen specific T cell hybrids - I. T cell hybrids which bind azobenzenearsonate. Mol Immunol 17: 925–931PubMedCrossRefGoogle Scholar
  3. 3.
    Kaufmann Y, Berke G, Eshhar Z (1981) Cytotoxic T lymphocyte hybridomas that mediate specific tumor cell lysis in vitro. Proc Natl Acad Sci USA 78: 2502–2506PubMedCrossRefGoogle Scholar
  4. 4.
    Taniguchi M, Miller JFAP (1978) Specific suppressive factors produced by hybridomas derived from the fusion of enriched suppressor T cells and a T lymphoma cell line. J Exp Med 148: 373–382PubMedCrossRefGoogle Scholar
  5. 5.
    Taniguchi M, Saito T, Tada T (1979) Antigen-specific suppressive factor produced by a transplantable I-J bearing T-cell hybridoma. Nature 278: 555–558PubMedCrossRefGoogle Scholar
  6. 6.
    Pacificio A, Capra JD (1980) T cell hybrids with arsonate specificity. I. Initial characterization of antigen-specific T cell products that bear a cross-reactive idiotype and determinants encoded by the murine major histocompatibility complex. J Exp Med 152: 1283–1301Google Scholar
  7. 7.
    Eshhar Z, Aple RN, Löwy H, Ben-Neriah Y, Givol D, Mozes E (1980) T cell hybridoma bearing heavy chain variable region determinants producing (T,G)-A—L-specific helper factor. Nature 286: 270–272PubMedCrossRefGoogle Scholar
  8. 8.
    Okuda K, Minami M, Ju S-T, Dorf ME (1981) Functional association of idiotypic and I-J determinants on the antigen receptor of suppressor T cells. Proc Nat Acad Sci USA 78: 4557–4561PubMedCrossRefGoogle Scholar
  9. 9.
    Tada T, Okumura K, Hayakawa K, Suzuki G, Abe R, Kumagai Y (1981) Immunological circuitry governed by MHC and VH gene products. In: Janeway C, Sercarz EE, Wigzell H (eds) Immunoglobulin Idiotypes. ICN-UCLA Symposia on Molecular and Cellular Biology Vol 20. Academic Press, New York, pp 563–572Google Scholar
  10. 10.
    Suzuki G, Hayakawa K, Okumura K, Cramer M, Rajewsky K, Tada T (1982) Heteroclitic fine specificity of monoclonal T cell receptor. Manuscript in preparation.Google Scholar
  11. 11.
    Kontiainen S, Simpson E, Bohrer E, Beverly PCL, Herzenberg LA, Fitzpatrick WC, Vogt P, Torano A, McKenzie IFC, Feldmann M (1978) T cell lines producing antigen-specific suppressor factor. Nature 274: 477–480PubMedCrossRefGoogle Scholar
  12. 12.
    Taussig MJ, Corvalan JRF, Binns RM, Holliman A (1979). Production of an H-2-related suppressor factor by a hybrid T-cell line. Nature 277: 305–308PubMedCrossRefGoogle Scholar
  13. 13.
    Hewitt HJ, Liew FY (1979) Antigen-specific suppressor factors produced by T cell hybridomas for delayed type sensitivity. Eur J Immunol 9: 572–575PubMedCrossRefGoogle Scholar
  14. 14.
    Kapp JA, Aranco BA, Clevinger BL (1980) Suppression of ggtibody and T cell proliferative responses to L-glutamic acid60 -L-alanine30-L-tyrosine10 by a specific monoclonal T cell factor. J Exp Med 152: 235–240PubMedCrossRefGoogle Scholar
  15. 15.
    Haimovich J, Sela M (1966) Inactivation of poly-DL-alanyl bacteriophage T4 with antisera specific towards poly-DL-alanine. J Immunol 97: 338–343PubMedGoogle Scholar
  16. 16.
    Mäkelä O (1966) Assay of anti-hapten antibody with the aid of hapten-coupled bacteriophage. Immunol 10: 81–86Google Scholar
  17. 17.
    Krawinkel U, Rajewsky K (1976) Specific enrichment of antigen- binding T and B lymphocyte surface receptors. Eur J Immunol 6: 529–536PubMedCrossRefGoogle Scholar
  18. 18.
    Krawinkel U, Cramer M, Kindred B, Rajewsky K (1979) Isolated hapten- binding receptors of sensitized lymphocytes. V. Cellular origin of receptor molecules. Eur J Immunol 9: 815–820PubMedCrossRefGoogle Scholar
  19. 19.
    Cramer M, Krawinkel U (1980) Immunochemical properties of isolated hapten-specific T cell receptor molecules. In Pernis B, Vogel H-J (eds) Regulatory T Lymphocytes, Academic Press, New York, pp 39–55Google Scholar
  20. 20.
    Becker M, Mäkelä O (1975) Modification of bacteriophage with hapten-ε-aminocaproyl-N-hydroxysuccinimide esters; increased sensitivity for immunoassay. Immunochem/Mol Immunol 12: 329–331Google Scholar
  21. 21.
    Bothwell ALM, Paskind M, Reth M, Imanishi-Kari T, Rajewsky K, Baltimgre D (1981) Heavy chain variable region contribution to the NPb family of antibodies: Somatic mutation evident in a y2a variable region. Cell 24: 625–637PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • M. Cramer
  • R. Mierau
  • T. Takemori
  • G. Suzuki
  • T. Tada

There are no affiliations available

Personalised recommendations