Purification and Biochemical Analysis of Antigen-Specific Suppressor Factors Isolated from T-Cell Hybridomas

  • D. R. Webb
  • B. A. Araneo
  • C. Healy
  • J. A. Kapp
  • K. Krupen
  • I. Nowowiejski
  • C. W. Pierce
  • C. M. Sorensen
  • S. Stein
  • K. J. Wieder
Conference paper
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 100)

Abstract

Recent advances in technology have made the understanding of the molecular and biochemical aspects of immune regulation an attainable goal. We have used some of these advances in somatic cell hybridization, microanalytical peptide chemistry and recombinant DNA technology, to study the molecular aspects of antigen-specific suppression of immune responses. These studies have used a group of related polypeptide antigens; L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT), L-glutamic acid50-L-tyrosine50 (GT), and L-glutamic acid50-L-alanine50 (GA). The immune responses in mice to these polymers are controlled by immune response (Ir) genes which map to discrete loci within the I region of the major histocompatability complex (H-2). In the case of GAT for example, immunization of mice bearing H-2a,b,d,f,k haplotypes results in antibody production to GAT and primes lymph node T cells for subsequent in vitro proliferation in response to GAT. In mice bearing the H-2p,q,s haplotypes immunization with GAT neither stimulates antibody-forming cells nor does it prime lymph node T cells for proliferation unless the GAT is complexed with an immunogenic carrier such as MBSA. Earlier studies suggested that the reason for this lack of responsiveness in mice bearing H-2p,q,s haplotypes was the development of GAT-specific suppressor T cells (1–5). More recently it has been shown that extracts from GAT-specific suppressor T cells from non-responder mice contain soluble proteins which can specifically suppress the response to GAT. These soluble proteins are called GAT-specific suppressor T-cell factors (GAT-TsF) and may also be found in the supernatant of cultures or cell extracts from responder mouse strains exposed to GAT under the appropriate conditions (6,7).

Keywords

Cellulose Carbohydrate Tyrosine Electrophoresis Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dunham EF, Dorf ME, Shreffler DC, Benacerraf B (1973) Mapping the H-2 linked genes governing respectively the immune responses to a glutamic acid, alanine, tyrosine copolymer and to limiting doses of ovalbumin. J Immunol 111: 1621–1625PubMedGoogle Scholar
  2. 2.
    Gershon RK, Maurer PH, Merryman CF (1973) A cellular basis for genetically controlled immunologic unresponsiveness in mice: Tolerance induction in T-cells. Proc Nat Acad Sci USA 70: 250–254PubMedCrossRefGoogle Scholar
  3. 3.
    Kapp JA, Pierce CW, Benacerraf B (1973) Genetic control of immune responses in vitro. I. Development of primary and secondary plaque-forming cell responses to the random terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10. J Exp Med 138: 1107–1120PubMedCrossRefGoogle Scholar
  4. 4.
    Araneo BA, Kapp JA (1980) H-2 linked Ir gene control of T-cell proliferative responses to the synthetic terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). Requirements for the T-cell activation in responder and non-responder mice. J Immunol 124: 1492–1498PubMedGoogle Scholar
  5. 5.
    Kapp JA, Pierce CW, Schlossman S, Benacerraf B (1974) Genetic control of immune responses in vitro. V. Stimulation of suppressor T cells in non-responder mice by terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10. J Exp Med 140: 648–659PubMedCrossRefGoogle Scholar
  6. 6.
    Kapp JA, Pierce CW, DeLaCroix F, Benacerraf B (1976) Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10. I. Activity and antigenic specificity. J Immunol 116: 305–309CrossRefGoogle Scholar
  7. 7.
    Kapp JA, Pierce CW, Benacerraf B (1977) Immunosuppressive factor(s) extracted from lymphoid cells of non-responder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10. II. Cellular source and effect on responder and non-responder mice. J Exp Med 145: 828–838PubMedCrossRefGoogle Scholar
  8. 8.
    Kapp JA (1978) Immunosuppressive factor(s) from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10. IV. Lack of strain restrictions among allogeneic nonresponder donors and recipients. J Exp Med 147: 997–1006PubMedCrossRefGoogle Scholar
  9. 9.
    Germain RN, Ju S-T, Kipps TJ, Benacerraf B, Dorf ME (1979) Shared idiotypic determinants on antibodies and T cell derived suppressor factor specific for the random terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10. J Exp Med 149: 613–622PubMedCrossRefGoogle Scholar
  10. 10.
    Galfre G, Howe SC, Milstein C, Butcher GW, Howard JC (1977) Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature 266: 550–552PubMedCrossRefGoogle Scholar
  11. 11.
    Kapp JA, Araneo BA, Clevinger BL (1980) Suppression of antibody and T cell proliferative responses to L-glutamic acid60-L-alanine30-L-tyrosine10 by a specific monoclonal T cell factor. J Exp Med 152: 235–240PubMedCrossRefGoogle Scholar
  12. 12.
    Taniguchi M, Takei I, Tada T (1980) Functional and molecular organization of an antigen-specific suppressor factor from a T cell hybridoma. Nature 283: 227–228PubMedCrossRefGoogle Scholar
  13. 13.
    Krupen K, Araneo BA, Brink L, Kapp JA, Stein S, Wieder KJ, Webb DR (1982) Purification and characterization of a monoclonal T cell suppressor factor specific for L-glutamic acid60-L-alanine30-L-tyrosine10. Proc Nat Acad Sci USA (in press)Google Scholar
  14. 14.
    Taniguchi M, Saito T, Takei I, Takuhisa T (1982) Presence of interchain disulfide bonds between two gene products that compose the secreted form of an antigen-specific suppressor factor. J Exp Med 153: 1672–1677CrossRefGoogle Scholar
  15. 15.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685PubMedCrossRefGoogle Scholar
  16. 16.
    Lingappa VR, Shields D, Woo SLC, Blobel G (1978) Nascent chicken ovalbumin contains the functional equivalent of a signal sequence. J Cell Biol 79: 567–572PubMedCrossRefGoogle Scholar
  17. 17.
    Erickson AH, Blobel H (1979) Early events in the biosynthesis of the lysosomal enzyme cathepsin D. J Biol Chem 254: 11771–11774PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • D. R. Webb
  • B. A. Araneo
  • C. Healy
  • J. A. Kapp
  • K. Krupen
  • I. Nowowiejski
  • C. W. Pierce
  • C. M. Sorensen
  • S. Stein
  • K. J. Wieder

There are no affiliations available

Personalised recommendations