Skip to main content

Part of the book series: Schriftenreihe Neurologie / Neurology Series ((NEUROSER,volume 22))

  • 18 Accesses

Zusammenfassung

Da die chirurgische Behandlung zur Diagnosestellung, Dekompression und Tumorreduktion an erster Stelle der therapeutischen Maßnahmen steht, wird die Strahlentherapie vorwiegend postoperativ eingesetzt. Deswegen ist sie als alleinige Behandlungsmodalität schwierig beurteilbar, da nach unserem Wissen noch nie eine randomisierte Studie durchgeführt wurde, in welcher die Radiotherapie nach nur stereotaktischer Nadelbiopsie mit der Bestrahlung nach vorangegangener partieller oder totaler Resektion verglichen wurde. Nach unseren Erfahrungen mit der im Kap. IV beschriebenen Pilotstudie, in der die Patienten präoperativ bestrahlt wurden, wäre eine solche Studie wegen der auch mit hochdosierten Steroiden oft nur schwierig kontrollierbaren Hirndrucksteigerung wenig erfolgversprechend. Die Wirkung einer postoperativen Strahlentherapie dagegen ist gut bekannt. Das mittlere progressionsfreie Intervall nach Operation und Nachbestrahlung beträgt rund 6–9 Monate (Tabelle 17) und die mittlere Überlebenszeit 9–12 Monate (Tabelle 16). Auch die Indikation zur postoperativen Strahlentherapie ist heute nicht mehr umstritten. Eine retrospektive Sammelstatistik (116) mit 1258 Patienten, die wegen undifferenzierter Astrozytome operiert oder operiert und bestrahlt wurden, ergab eine Rate klinisch Geheilter von 0,6% (4/649) der allein operierten und von 4% (26/609) der operierten und bestrahlten Patienten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams GE (1973) Clinical radiosensitization of hypoxic cells. Br Med Bull 29:48–53

    PubMed  CAS  Google Scholar 

  2. Adams GE, Dewey DL (1963) Hydrated electrons and radiobiological sensitation. Biochem Biophys Res Commun 12:473–481

    Article  PubMed  CAS  Google Scholar 

  3. Andrews JR (1978) The radiobiology of human cancer radiotherapy, 2nd edn. University Park Press, Baltimore

    Google Scholar 

  4. Aristizabal SA, Caldwell WL (1971) Time-dose volume relationships in the treatment of glioblastoma multiforme. Radiology 101:201–202

    Google Scholar 

  5. Aristizabal S, Caldwell WL, Avila J (1977) The relationship of time-dose fractionation factors to complications in the treatment of pituitary tumors by irradiation. Int J Radiat Oncol Biol Phys 2:667–673

    Article  PubMed  CAS  Google Scholar 

  6. Arnold A, Bailey P, Laughlin JS (1954) Effects of betatron radiations in the brain of primates. Neurology (NY) 4:165–178

    CAS  Google Scholar 

  7. Asquith JC, Foster JL, Willson RL (1974) Metronidazole (“Flagyl”): A radiosensi-tizer of hypoxic cells. Br J Radiol 47:474–481

    Article  PubMed  CAS  Google Scholar 

  8. Asquith JC, Watts ME, Patel K (1974) Electron affinic sensitization. V Radiosensitization of hypoxic bacteria and mammalian cells in vitro by some nitroimidazoles and nitropyrazoles. Radiat Res 60:108–118

    Article  PubMed  CAS  Google Scholar 

  9. Beck MDF (1980) Imaging techniques in the diagnosis of radiation damage to the nervous system. In: Gilbert HA, Kagan AR (eds) Radiation damage to the nervous system. A delayed therapeutic hazard. Raven Press, New York, pp 107–128

    Google Scholar 

  10. Bewley DK (1972) Pions and heavy ions in radiotherapy. Nature 237:17–19

    Article  PubMed  CAS  Google Scholar 

  11. Bicher HJ, Hetzel FW, Sandhu TS, Frinak S, Vaupel P, O’Hara M, O’Brian T (1980) Effects of hyperthermia in normal and tumor microenvironment. Radiology 137: 523–530

    PubMed  CAS  Google Scholar 

  12. Bicher HJ, Sandhu TS, Hetzel FW (1980) Hyperthermia and radiation in combination: a clinical fractionation regime. Int J Radiat Oncol Biol Phys 6:861–866

    Article  Google Scholar 

  13. Bleyer WA, Griffin TW (1980) White matter necrosis, mineralizing microangiopathy and intellectual abilities in survivers of childhood leukemia. In: Gilbert HA, Kagan AR (eds) Radiation damage to the nervous system. A delayed therapeutic harzard. Raven Press, New York, pp 59–92

    Google Scholar 

  14. Boldrey E, Sheline G (1967) Delayed transitory clinical manifestations after radiation treatment of intracranial tumors. Acta Radiol 5:5–10

    Article  Google Scholar 

  15. Bouchard J (1973) Central nervous system. In: Fletscher GH (ed) Textbook of radiotherapy, 2nd edn. Lea & Febiger, Philadelphia, pp 366–418

    Google Scholar 

  16. Bryan P (1974) CSF seeding of intra-cranial tumors: A study of 96 cases. Clin Radiol 25:355–360

    Article  PubMed  CAS  Google Scholar 

  17. Bull JWD, Rovit RL (1957) The radiographic localization of intracerebral gliomata. J Fac Radiol 8:147–157

    Article  Google Scholar 

  18. Bush RS, Jenkin RDT, Allt WEC (1978) Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br J Cancer 37:302–306

    Google Scholar 

  19. Castro JR, Quivey JM (1977) Clinical experience and expectations with Helium and heavy ion irradiation. Int J Radiat Oncol Biol Phys 3:127–131

    Article  PubMed  CAS  Google Scholar 

  20. Catterall M (1977) The results of randomised clinical trials of fast neutrons from the medical research council cyclotron, London. Int J Radiat Oncol Biol Phys 3:247–253

    Article  PubMed  CAS  Google Scholar 

  21. Catterall M, Bloom HJG, Ash DV et al. (1980) Fast neutrons compared with mega-voltage x-rays in the treatment of patients with supratentorial glioblastoma: A controlled pilot study. Int J Radiat Oncol Biol Phys 6:261–266

    Article  PubMed  CAS  Google Scholar 

  22. Caveness WF (1977) Pathology of radiation damage to the normal brain of the monkey. Natl Cancer Inst Monogr 46:57–76

    PubMed  CAS  Google Scholar 

  23. Caveness WF (1980) Experimental observations: Delayed necrosis in normal monkey brain. In: Gilbert HA, Kagan AR (eds) Radiation damage to the nervous system. A delayed therapeutic harzard. Raven Press, New York, pp 1–38

    Google Scholar 

  24. Chang CH (1977) Hyperbaric oxygen and radiation therapy in the management of glioblastoma. Natl Cancer Inst Monogr 46:163–169

    PubMed  CAS  Google Scholar 

  25. Chapman JD, Renvers AP, Borsa J (1973) Effectiveness of nitrofuran derivatives in sensitizing hypoxic mammalian cells to x-rays. Br J Radiol 46:623–630

    Article  PubMed  CAS  Google Scholar 

  26. Chassard JL, Dutou L, Gérard JP, Papillon J (1976) La radiothérapie post-opératoire des gliomes hémisphériques de l’adulte. J Radiol Electrol Med Nucl 57:391–398

    PubMed  CAS  Google Scholar 

  27. Chauser B, Morris C, Field SB, Lewis PB (1977) The effects of fast neutrons and x-rays on the subependymal layer of the rat brain. Radiology 122:821–823

    PubMed  CAS  Google Scholar 

  28. Churchill-Davidson J, Sanger C, Thomlinson RH (1957) Oxygenation in radiotherapy. II. Clinical application. Br J Radiol 30:406–422

    Article  PubMed  CAS  Google Scholar 

  29. Concannon JP, Kramer S, Berry R (1960) The extent of intracranial gliomata at autopsy and its relationships to techniques used in radiation therapy of brain tumors. AJR 84:99–107

    CAS  Google Scholar 

  30. Cottier H (1966) Histopathologic der Wirkung ionisierender Strahlen auf höhere Organismen (Tier und Mensch). In: Zuppinger A (Hrsg) Strahlenbiologie. Springer, Berlin Heidelberg New York (Handbuch der Medizinischen Radiology, Bd. II, S 35–272

    Google Scholar 

  31. Denekamp J, Michael BD (1972) Preferential sensitation of hypoxic cells to radiation in vivo. Nature 239:21–27

    CAS  Google Scholar 

  32. Deutsch G, Foster JL, McFazean JA (1975) Human studies with “high dose” metronidozole, a non-toxic radiosensitizer of hypoxic cells. Br J Cancer 31:75–80

    Article  PubMed  CAS  Google Scholar 

  33. Dewey WC, Thrall DE, Gilette EL (1977) Hyperthermia and radiation: A selective thermal effect on chronically hypoxic tumor cells in vivo. Int J Radiat Oncol Biol Phys 2:99–103

    PubMed  CAS  Google Scholar 

  34. Dische S (1978) Hyperbaric oxygen: The medical research council trials and other clinical significance. Br J Radiol 5 1:888–894

    Article  Google Scholar 

  35. Dische S, Saunders MI, Lee ME, Adams GE, Flockhart IR (1977) Clinical testing of radiosensitizer RO-07–0582: Experience with multiple doses. Br J Cancer 35: 567–579

    Article  PubMed  CAS  Google Scholar 

  36. Dische S, Saunders MJ, Flockhart IR, Lee ME, Anderson P (1979) Misonidazole: A drug for trial in radiotherapy and oncology. Int J Radiat Oncol Biol Phys 5: 851–860

    PubMed  CAS  Google Scholar 

  37. Druckmann A (1929) Schlafsucht als Folge der Röntgenbestrahlung. Beitrag zur Strahlenempfindlichkeit des Gehirns. Strahlentherapie 33:382–384

    Google Scholar 

  38. Dugle DL, Chapman JD, Gillespie CJ, Borsa J, Webb RG, Meeker BE, Renvers AP (1972) Radiation induced strand breakage in mammalian cell DNA: I. Enhancement of single-strand breaks by chemical radio sensitizers. Int J Radiat Biol Phys 22:545–555

    Article  CAS  Google Scholar 

  39. Eddy HA (1980) Alterations in tumor microvasculature during hyperthermia. Radiology 137:515–525

    PubMed  CAS  Google Scholar 

  40. Ellis F (1969) Dose, time and fractionation. A clinical hypothesis. Clin Radiol 20: 1–7

    Article  PubMed  CAS  Google Scholar 

  41. Emami B, Nussbaum GH, Then’Haken RK, Hughes WL (1980) Physiological effects of hyperthermia: Response of capillary blood flow and structures to local tumor heating. Radiology 137:805–809

    PubMed  CAS  Google Scholar 

  42. EORTC (in preparation) Cooperative group for radiotherapy. Double blind study of radiotherapy and misonidazole for high malignant brain tumors.

    Google Scholar 

  43. EORTC (in preparation) Cooperative group for radiotherapy. Multiple daily irradiations for high grade malignant gliomas

    Google Scholar 

  44. Field SB, Hume SP, Law MP, Myers R (1977) The response of tissues to combined hyperthermia and x-rays. Br J Radiol 50:129–134

    Article  PubMed  CAS  Google Scholar 

  45. Fischer AW, Holfelder H (1930) Lokales Amyloid im Gehirn: Eine Spätfolge von Röntgenbestrahlungen. Zentralblatt Chir 277:475

    Google Scholar 

  46. Fletscher GH (1979) Squames cell carcinoma of the oropharynx. Int J Radiat Oncol Biol Phys 5:2073–2090

    Google Scholar 

  47. Foster JL, Willson RL (1973) Radio sensit ation of anoxic cells by metronidazole. Br J Radiol 46:234–235

    Article  PubMed  CAS  Google Scholar 

  48. Franke HD (1973) Die Strahlenempfindlichkeit des Nervensystems. Strahlenschutz Forsch Prax 12:163–194

    Google Scholar 

  49. Franke HD, Lierse W (1978) Strahlenbedingte Reaktionen des Gehirns und des Rückenmarks. Strahlentherapie 174:587–198

    Google Scholar 

  50. Freemann JE, Johnston PGB, Voke JM (1973) Somnolence after prophylactic cranial irradiation in children with acute lymphoblastic leukemia. Br Med J IV: 523–525

    Article  Google Scholar 

  51. Gangji D, Reaman G, Cohen SR, Bleyer A, Poplack DG (1980) Leukoencephalo-pathy and elevated levels of myelin basic protein in the cerebrospinal fluid of patients with acute lymphoblastic leukemia. N Engl J Med 303:19–21

    Article  PubMed  CAS  Google Scholar 

  52. Gangji D, Schwade JG, Strong JM (to be published) Phenytoin-Misonidazole: Possible metabolic interaction. Cancer Treat Rep

    Google Scholar 

  53. Gilbert HA, Kagan AR (1980) Preface. In: Gilbert HA, Kagan AR (eds) Radiation damage to the nervous system. A delayed therapeutic hazard. Raven Press, New York

    Google Scholar 

  54. Gray AJ, Dische S, Adams GE, Flockhart IR, Forster JL (1976) Clinical testing of the radio sensitizer RO-07–0582. I. Dose tolerance, serum and tumour concentration. Clin Radiol 27:151–157

    Article  PubMed  CAS  Google Scholar 

  55. Gray LH, Conger AD, Ebert M (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26: 631–648

    Google Scholar 

  56. Green N, George F (1970) Total brain radiotherapy: Technical considerations. Radiology 96:429–432

    PubMed  CAS  Google Scholar 

  57. Gregersen MJ, Pallavicini C, Chien S (1962) Studies in the chemical composition of the central nervous system in relation to the effects of x-irradiation and of disturbances in water and salt balance. Radiat Res 17:209–225

    Article  PubMed  CAS  Google Scholar 

  58. Gutin PH, Wara WM, Phillips TL, Wilson CB (1980) Hypoxic cell radiosensitizers in the treatment of malignant brain tumors. Neurosurgery 6:567–576

    Article  PubMed  CAS  Google Scholar 

  59. Haase W, Rey G, Wölgens P (1977) Beitrag zur Strahlentherapie der Hirntumoren. Strahlentherapie 153:437–448

    PubMed  CAS  Google Scholar 

  60. Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34: 3117–3123

    PubMed  CAS  Google Scholar 

  61. Hall EJ, Biaglow J (1977) RO-07–0582 as a radiosensitizer and cytotoxic agent. Int J Radiat Oncol Biol Phys 2:521–530

    Article  PubMed  CAS  Google Scholar 

  62. Harisiadis L, Hall EJ, Kraljevic U, Borek C (1975) Hyperthermia: Biological studies at the cellular level. Radiology 117:447–452

    PubMed  CAS  Google Scholar 

  63. Harris JR, Levene MB (1976) Visual complications following irradiation, for pituitary adenomas and craniopharyngeomas. Radiology 120:167–171

    PubMed  CAS  Google Scholar 

  64. Hellriegel W (1957) Die Strahlenbehandlung der Hirntumoren. Strahlentherapie 102:21–30

    PubMed  CAS  Google Scholar 

  65. Hevitt HB, Wilson CW (1959) The effect of tissue oxygen tension on the radiosen-sitivity of leukemia cells irradiated in situ in the livers of leukaemic mice. Br J Cancer 13:675–684

    Article  Google Scholar 

  66. Hindo WA, De Trana FA, Lee MS, Hendrickson FR (1970) Large dose increment irradiation in treatment of cerebral metastases. Cancer 26:138–141

    Article  PubMed  CAS  Google Scholar 

  67. Hofer KG, Hofer MG, Ieracitano J, McLaughlin WH (1977) Radiosensitization of hypoxic tumor cells by simultaneous administration of hyperthermia and nitro-imidazoles. Radiat Res 70:362–377

    Article  PubMed  CAS  Google Scholar 

  68. Hoffmann WF, Levin VA, Wilson CB (1979) Evaluation of malignant glioma patients during the postirradiation period. J Neurosurg 50:624–628

    Article  Google Scholar 

  69. Jentzsch K, Kärcher KH, Kogelnik HD et al. (1977) Initial clinical experience with the radiosensitizing nitroimidazole RO-07–0582. Strahlentherapie 153:825–831

    PubMed  CAS  Google Scholar 

  70. Jones A (1964) Transient radiation myelopathy (with reference to Lhermitte’s signe of electrical paresthesia). Br J Radiol 37:727–764

    Article  PubMed  CAS  Google Scholar 

  71. Kagan AR, Wollin M, Gilbert HA, Nussbaum H, Hintz BL, Rao A, Chan PYM (1980) Comparison of the tolerance of the brain and spinal cord to injury by radiations. In: Gilbert HA, Kagan AR (eds) Radiation damage to the nervous system. A delayed therapeutic hazard. Raven Press, New York, pp 183–190

    Google Scholar 

  72. Klatzo I, Miguel J, Tobias C, Haymaker W (1961) Effects of alpha-particle radiation on the rat brain, including vascular permeability and glycogen studies. J Neuropathol Exp Neurol 20:495–472

    Article  Google Scholar 

  73. Kligerman MM, Knapp EA, Petersen DF (1975) Biomedical program leading to therapeutic trials of pion radiation at Los Alamos. Cancer 36:675–680

    Article  Google Scholar 

  74. Kogel AJ van der, Barendsen GW (1979) Late effects of radiation in the spinal cord. Publication of the radiobiological institute. Rijswijk, The Netherlands, pp 118–121

    Google Scholar 

  75. Kogelnik HD, Reinartz G, Szepesi T, Wurst F, Mamoli B, Wessely P, Stark H (1980) Klinische Erfahrungen bei täglicher Gabe von Misonidazol. Strahlentherapie 156: 759–764

    Google Scholar 

  76. Köhn K, Schiungbaum W (1958) Ein Beitrag zur Kenntnis der frühkindlichen Strahlenencephalopathie. Strahlentherapie 107:556–566

    PubMed  Google Scholar 

  77. Kramer S (1959) Tumor extent as a determining factor in radiotherapy of glioblastomas. Acta Radiol 8:111–117

    Google Scholar 

  78. Kramer S (1968) The hazards of therapeutic irradiation of the central nervous system. Clin Neurosurg 15:301–318

    PubMed  CAS  Google Scholar 

  79. Kramer S, Sauthard ME, Mansfield CM (1972) Radiation effect and tolerance of the central nervous system. Front Radiat Ther Oncol 6:332–345

    Google Scholar 

  80. Lampert PW, Davis RL (1964) Delayed effects of radiation in the human central nervous system: “early and late” delayed reactions. Neurology (NY) 14:912–917

    CAS  Google Scholar 

  81. Laramore GE, Griffin TW, Gerdes AJ, Parker RG (1978) Fast neutron and mixed (neutron/photon) beam teletherapy for grades III and IV astrocytomas. Cancer 42: 96–103

    Article  PubMed  CAS  Google Scholar 

  82. Levin VA, Edwards MS, Byrd A (1979) Quantitative observations of the acute effects of x-irradiation on brain capillary permeability: Part I. Int J Radiat Oncol Biol Phys 5:1677–1631

    Google Scholar 

  83. Ley A, Guitard JM (1962) Surgical management of intracranial gliomas. J Neurosurg 19:365–374

    Article  PubMed  CAS  Google Scholar 

  84. Lierse W, Francke HD (1970) Ultrastrukturelle Veränderungen am Gehirn des Meerschweinchens und der Ratte während der Latenzzeit der Strahlenreaktion. Fortschr Röntgenstr 112:151–157

    Article  CAS  Google Scholar 

  85. Lindgren M (1958) On tolerance of brain tissue and sensitivity of brain tumours to irradiation. Acta Radiol (Suppl) (Stockh) 170:1–73

    CAS  Google Scholar 

  86. Liu HM, Maurer HS, Vongriont S, Conway JJ (1978) Methotrexate encephalopathy. A neuropathology study. Hum Pathol 9:635–648

    Article  PubMed  CAS  Google Scholar 

  87. Marsa GW, Goffinet DR, Rubinstein LJ, Bagshaw MA (1975) Megavoltage irradiation in the treatment of gliomas of the brain and spinal cord. Cancer 36:1681–1689

    Article  PubMed  CAS  Google Scholar 

  88. Maruyama Y, Beach JL, Feola J (1980) Scheduling of hypoxic tumor therapy using neutron brachytherapy. Radiology 137:775–781

    PubMed  CAS  Google Scholar 

  89. Matzukado Y, McCarty CS, Kernohan JW (1961) Growth of glioblastoma multiforme (astrocytoma grade HI and IV) in neurosurgical practice. J Neurosurg 18: 636–644

    Article  Google Scholar 

  90. Mcintosh S, Fischer DB, Rothman S, Rosenfield N, Label JS, O’Brien RT (1977) Intracranial calcification in childhood leukemia. J Pediatr 91:909–913

    Article  PubMed  CAS  Google Scholar 

  91. Meadows AT, Evans AE (1976) Effects of chemotherapy in the central nervous system. Cancer 37:1079–1085

    Article  PubMed  CAS  Google Scholar 

  92. Mikhael MA (1980) Dosimetric considerations in the diagnosis of radiation necrosis of the brain. In: Gilbert HA, Kagan HR (eds) Radiation damage to the nervous system. A delayed hazard. Raven Press, New York, pp 59–92

    Google Scholar 

  93. Milne N, Hill RP, Bush RS (1973) Factors affecting hypoxic KHT tumor cells in mice breathing O2, O2 and CO2, or hyperbaric oxygen with or without anaesthetic. Radiology 106:663–671

    PubMed  CAS  Google Scholar 

  94. Onoyma Y, Abe M, Yabumoto E, Sakamoto T, Nishidai T, Suyama S (1976) Radiation therapy in the treatment of glioblastoma. AJR 126:481–492

    Google Scholar 

  95. Orton CG, Ellis F (1973) A simplification in the use of the NSD concept in practical radiotherapy. Br J Radiol 46:529–537

    Article  PubMed  CAS  Google Scholar 

  96. Parker D, Malpas JS, Sandland R, Sheaff PC, Freeman JE, Paxton A (1978) Outlook following somnolence syndrom after prophylactic cranial irradiation. Br Med J IV:554–559

    Article  Google Scholar 

  97. Parker RG, Berry HC, Gerdes AJ, Soronen MD, Shaw CM (1976) Fast neutron beam radiotherapy of glioblastoma multiforme. AJR 127:331–335

    PubMed  CAS  Google Scholar 

  98. Peylan-Ramu N, Poplack DG, Pizzo PA, Adornato BT, Di Chiro G (1978) Abnormal CT scans of the brain in asymptomatic children with acute lymphocytic leukemia after prophylactic treatment of the central nervous system with radiation and intrathecal chemotherapy. N Engl J Med 298:1815–1818

    Article  Google Scholar 

  99. Pochedly C (1979) Prophylactic CNS-therapy in childhood acute leukemia. Review of methods used. Am J Pediatr Hematol Oncol 1:119–126

    PubMed  CAS  Google Scholar 

  100. Price RA (1979) Histopathology of CNS leukemia and complications of therapy. Am J Pediatr Hematol Oncol 1:21–30

    PubMed  CAS  Google Scholar 

  101. Price RA, Birdwell DA (1978) The central nervous system in childhood leukemia. III. Mineralizing microangiopathy and dystrophic calcification. Cancer 42:717–728

    Article  PubMed  CAS  Google Scholar 

  102. Price RA, Jamilson PA (1975) The central nervous system in childhood leukemia. II. Subacute leucoencephalopathy. Cancer 35:316–318

    Article  Google Scholar 

  103. Putten LM van (1977) Reoxygenation of hypoxic tumor cells. Strahlentherapie 153:380–383

    PubMed  Google Scholar 

  104. Putten LM van, Kallman RF (1968) Oxygenation status of a transplantable tumor during fractionated radiotherapy. J Natl Cancer Inst 40:441–451

    PubMed  Google Scholar 

  105. Raju MR, Amolz AJ, Dicello JF et al. (1978) A heavy particle comparative study. Br J Radiol 51:699–703

    Article  PubMed  CAS  Google Scholar 

  106. Rider WD (1963) Radiation damage to the brain. A new syndrome. J Can Assoc Radiol 14:67–69

    PubMed  CAS  Google Scholar 

  107. Rubin P (1969) Extradural spinal cord compression by tumor. I. Experimental production and treatment trial. Radiology 93:1243–1260

    PubMed  CAS  Google Scholar 

  108. Rubin P, Hanley J, Keys HM, Marcial V, Brady L (1979) Carbogen breathing during radiation therapy — the radiation therapy oncology group national study. Int J Radiat Oncol Biol Phys 5:1963–1970

    Article  PubMed  CAS  Google Scholar 

  109. Salazar OM, Rubin P (1976) The spread of glioblastoma multiforme as a determining factor in the radiation treated volume. Int J Radiat Oncol Biol Phys 1:627–637

    Article  PubMed  CAS  Google Scholar 

  110. Salazar OM, Rubin P, McDonald JV, Feldstein ML (1976) High dose radiation therapy in the treatment of glioblastomas multiforme: a preliminary report. Int J Radiat Oncol Biol Phys 1:717–727

    Article  PubMed  CAS  Google Scholar 

  111. Salazar OM, Rubin P, Feldstein ML, Pizzutiello R (1979) High dose radiation therapy in the treatment of malignant gliomas: final report. Int J Radiat Oncol Biol Phys 5:1733–1740

    PubMed  CAS  Google Scholar 

  112. Schlienger M, Constans JP, Roujeau J, Askienazy S, Eschwege F (1973) Irradiation d’une serie de 304 tumeurs intrakranielles malignes primitives de l’adulte. J Radiol Electrol Med Nucl 54:939–950

    Google Scholar 

  113. Seiler R, Greiner R, Zimmermann A, Markwalder H (1978) Radiotherapy combined with procarbazine, bleomycin and CCNU in the treatment of high-grade supratentorial astrocytomas. J Neurosurg 48:861–865

    Article  PubMed  CAS  Google Scholar 

  114. Sheldon PW, Fowler JF (1979) The effect of recovery from potentially lethal damage on the determination of reoxygenation in a murine tumour. Br J Radiol 52:634–641

    Article  PubMed  CAS  Google Scholar 

  115. Sheline GE (1975) Radiation therapy of primary tumours. Semin Oncol 2:29–42

    PubMed  CAS  Google Scholar 

  116. Sheline GE (1976) The importance of distinguishing tumour grade in malignant gliomas: treatment and prognosis. Int J Radiat Oncol Biol Phys 1:781–786

    Article  PubMed  CAS  Google Scholar 

  117. Sheline GE, Wara WM (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228

    Article  PubMed  CAS  Google Scholar 

  118. Simpson WJ, Platts ME (1976) Fractionation study in the treatment of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 1:639–644

    Article  PubMed  CAS  Google Scholar 

  119. Song CW, Kang MS, Rhee Juong G, Levitt SH (1980) The effect of hyperthermia on vascular function, pH, and cell survival. Radiology 137:795–803

    PubMed  CAS  Google Scholar 

  120. Sridhar R, Sutherland R (1977) Hyperthermic potentiation of cytotoxicity of Ro-07–0582 in multicell spheroids. Int J Radiat Oncol Biol Phys 2:531–535

    Article  PubMed  CAS  Google Scholar 

  121. Steward FA, Denekamp J (1978) The therapeutic advantage of combined heat and x-rays on a mouse fibrosarcoma. Br J Radiol 51:307–316

    Article  Google Scholar 

  122. Sutherland RM, Franko AJ (1980) On the nature of the radiobiologically hpoxic fraction in tumors. Int J Radiat Oncol Biol Phys 6:117–120

    PubMed  CAS  Google Scholar 

  123. Thomlinson RH, Gray LH (1955) Histological structure of some human lung cancers and possible implications for radiotherapy. Br J Cancer 9:539–549

    Article  PubMed  CAS  Google Scholar 

  124. Thomlinson RH, Dische S, Gray AJ, Errington LM (1976) Clinical testing of the radiosensitizer RO-07–0582. III. Response of tumours. Clin Radiol 27:151–157

    Article  Google Scholar 

  125. Todd IDH (1963) Choice of volume in the x-ray treatment of supratentorial gliomas. Br J Radiol 36:645–649

    Article  PubMed  CAS  Google Scholar 

  126. Turner AR, Allalunis MJ, Urtasun RC, Pedersen JE, Meeker BE (1980) Cytotoxic and radiosensitizing effects of Misonidazole on hematopoiesis in normal and tumor-bearing mice. Int J Radiat Oncol Biol Phys 6:1157–1162

    Article  PubMed  CAS  Google Scholar 

  127. Urtasun R, Band P, Chapman D, Feldstein ML, Mielke B, Fryer C (1976) Radiation and high-dose metronidazole in supratentorial glioblastomas N Engl J Med 294:1364–1367

    Article  PubMed  CAS  Google Scholar 

  128. Urtasun RC, Band P, Chapman D, Rabin H, Wilson F, Fryer CG (1977) Clinical phase I study of the hypoxic cell radiosensitizer RO-07–0582, a 2-nitro-imidazole derivative. Radiology 122:801–804

    PubMed  CAS  Google Scholar 

  129. Walker MD, Strike TA (1979) A phase II evaluation of misonidazole in the treatment of malignant glioma (Abstract). Proc Am Assoc Cancer Res 20:433

    Google Scholar 

  130. Walker MD, Alexander E, Hunt WE et al. (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. J Neurosurg 49:333–343

    Article  PubMed  CAS  Google Scholar 

  131. Walker MD, Strike TA, Sheldine GE (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5:1725–1731

    PubMed  CAS  Google Scholar 

  132. Weichselbaum RR, Epstein J, Little JB, Kornblith P (1976) Inherent cellular radiosensitivity of human tumors of varying clinical curability. AJR 127:1027–1032

    PubMed  CAS  Google Scholar 

  133. Yung W, Steward W, Marks JE, Griem ML, Mullan JF (1976) Glioblastoma multiforme: treatment with radiation and triiodothyronine. Int J Radiat Oncol Biol Phys 1:645–650

    Article  PubMed  CAS  Google Scholar 

  134. Zeman W (1966) Oxygen effect and selectivity of radiolesions in the mammalian neuraxis. Acta Radiol 5:204–216

    Article  CAS  Google Scholar 

  135. Zippel RM, Sack H (1979) Nebenwirkungen und Spätfolgen der kombinierten Strahlen- und Chemotherapie des Gehirnschädels bei Kindern mit akuter lympho-blastischer Leukämie (ALL). Strahlentherapie 155:165–170

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Seiler, R.W. (1982). Strahlentherapie. In: Die undifferenzierten Astrozytome des Großhirns. Schriftenreihe Neurologie / Neurology Series, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68505-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68505-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68506-4

  • Online ISBN: 978-3-642-68505-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics