Skip to main content

The Blood-Brain Barrier and its Role in the Control of Circulating Hormone Effects on the Brain

  • Conference paper
Central Cardiovascular Control

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 3))

Abstract

The most prominent function of the central nervous system is the control of motor functions by rapidly transmitted impulses through efferent cranial and spinal peripheral nerves. Besides electrically transmitted neural impulses, humoral mechanisms with more sustained actions are exercised by the brain and spinal cord to regulate body homeostasis. Thus, the brain may be regarded as an “endocrine gland” discharging neurohormones (peptides) either into the general circulation (neurohypophyseal hormones) or into the hypothalamo-adenohypophyseal portal circulation (releasing and inhibiting hormones). The brain, therefore, which is protected by the blood-brain barrier from disturbing and potentially noxious exogenous and endogenous agents circulating in the blood, has to have certain neurohemal regions beyond this barrier, such as the neural lobe and the median eminence (infundibulum), where neurohormones have free access to the blood stream. To regulate somatic and autonomic functions in the best possible way, the central nervous system is highly dependent on feedback signals conveyed through somatic and visceral afferent nerves as well as on peripheral humoral signals such as peripheral hormones and other circulating substances that are under homeostatic regulation, e.g., peptides, amines, electrolytes, and other biologically active agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott NJ (1979) Primitive forms of brain homeostasis. Trends Neurosci 2:91–93

    Google Scholar 

  • Adinolfi M (1976) Neurological handicap and permeability of the blood-cerebrospinal fluid barrier during fetal life to maternal antibodies and hormones. Devel Med Child Neurol 18:243–246

    CAS  Google Scholar 

  • Adinolfi M, Beck SE, Haddad SA, Seller MJ (1976) Permeability of the blood-cerebro-spinal fluid barrier to plasma proteins during fetal and perinatal life. Nature 259: 140–141

    PubMed  CAS  Google Scholar 

  • Agmo A (1974) Uptake of iodinated oxytocin by some tissues and organs in the malerat. Acta Physiol Scand 91:330–338

    PubMed  CAS  Google Scholar 

  • Albert Z, Orlowski M, Rzudilo Z, Orlowska J (1966) Studies on γ-glutamyl transpeptidase activity and its histochemical localization in the central nervous system of man and different animal species. Acta Histochem 25:312–320

    PubMed  CAS  Google Scholar 

  • Allen JP, Kendall JW, McGilvra R, Vancura C (1974) Immunoreactive ACTH in cerebrospinal fluid. J Clin Endocrinol Metab 38:586–593

    PubMed  CAS  Google Scholar 

  • Aroskar JP, Chan WY, Stouffer JE, Schneider CH, Murti VVS, du Vigneaud V (1964) Renal excretion and tissue distribution of radioactivity after administration of tritium-labelled oxytocin to rats. Endocrinology 74:226–232

    PubMed  CAS  Google Scholar 

  • Barlow CF (1964) Clinical aspects of the blood-brain barrier. Annu Rev Med 15:187–202

    PubMed  CAS  Google Scholar 

  • Barnes KL, Ferrario CM (1981) Anatomical and physiological characterization of the sympatho-facilitative area postrema pathways in the dog. In: Buckley JP, Ferrario CM (eds) Central nervous system mechanisms in hypertension. Raven Press, New York, pp 25–35

    Google Scholar 

  • Barry DI, Paulson OB, Hertz MM (1980) The blood-brain barrier: An overview with special reference to insulin effects on glucose transport. In: Cerebral metabolism and function. Acta Neurol Scand [Suppl 62] 78:147–156

    CAS  Google Scholar 

  • Bauer KF, Leonhardt H (1955) Zur Kenntnis der Blut-Gehirnschranke. Cardiazol-Schock und Schrankenzusammenbruch. Arch Psych Z Neurol 193:68–79

    CAS  Google Scholar 

  • Bauer KF, Leonhardt H (1956) A contribution to the pathological physiology of the blood-brain barrier. J Comp Neurol 106:363–370

    PubMed  CAS  Google Scholar 

  • Becker NH, Almazon R (1968) Evidence for the functional polarization of micro-pinocytotic vesicles in rat choroid plexus. J Histochem Cytochem 16:278–299

    PubMed  CAS  Google Scholar 

  • Behnsen G (1926) Farbstoffversuche mit Trypanblau an der Schranke zwischen Blut und Zentralnervensystem der wachsenden Maus. MMW 73:1143

    Google Scholar 

  • Betz AL, Firth JA, Goldstein GW (1980) Polarity of the blood-brain barrier. Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res 192:17–28

    PubMed  CAS  Google Scholar 

  • Bito LZ (1969) Blood-brain barrier: evidence for active cation transport between blood and the extracellular fluid of brain. Science 165:81–83

    PubMed  CAS  Google Scholar 

  • Blomstrand CH, Johansson B, Rosengren B (1975) Blood-brain barrier lesions in acute hypertension in rabbits after unilateral X-ray exposure of brain. Acta Neuropathol (Beri) 31:97–102

    CAS  Google Scholar 

  • Bloom F, Segal D, Ling N, Guillemin R (1976) Endorphins: Profound behavioral effects in rats suggest new etiological factors in mental illness. Science 194:630–632

    PubMed  CAS  Google Scholar 

  • Bolwig TG, Hertz MM, Paulson OB, Spotoft H, Rafaelson OJ (1977a) The permeability of the blood-brain barrier during electrically induced seizures in man. Eur J Clin Invest 7:87–93

    PubMed  CAS  Google Scholar 

  • Bolwig TG, Hertz MM, Holm-Jensen J (1977b) Blood-brain barrier permeability during electroshock seizures in the rat. Eur J Clin Invest 7:95–100

    PubMed  CAS  Google Scholar 

  • Bolwig TG, Hertz MM, Westergaard E (1977c) Acute hypertension causing blood-brain barrier breakdown during epileptic seizures. Acta Neurol Scand 56:335–342

    PubMed  CAS  Google Scholar 

  • Borison HL (1979) Vomiting and related reflexes. In: McBrooks C, Koizumi K, Sato A (eds) Integrative functions of the autonomic nervous system. Elsevier, New York, pp 257–262

    Google Scholar 

  • Borison HL, Brizzee KR (1951) Morphology of emetic chemoreceptor trigger zone in cat medulla oblongata. Proc Soc Exp Biol Med 77:38–42

    PubMed  CAS  Google Scholar 

  • Bouchaud MC (1972) Demonstration par radioautographie de l’existence d’une barrière hématoencéphalique pour la 5-hydroxytryptamine. CR Acad Sc Paris 275:975–978

    CAS  Google Scholar 

  • Bradbury MWB (1975) Ontogeny of the mammalian brain-barrier system. In: Cserr HF, Fenstermacher JD, Fencl V (eds) Fluid environment of the brain. Academic Press, New York, pp 81–103

    Google Scholar 

  • Bradbury MWB (1979) The concept of a blood-brain barrier. Wiley, Chichester New York

    Google Scholar 

  • Brisbane Toronto Braun LD, Cornford EM, Oldendorf WH (1980) Newborn rabbit blood-brain barrier is selectively permeable and differs substantially from the adult. J Neurochem 34: 147–152

    Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    PubMed  CAS  Google Scholar 

  • Brightman MW, Reese TS, Feder N (1970) Assessment with the electron microscope of the permeability to peroxidase of cerebral endothelium and epithelium in mice and sharks. Capillary permeability. Alfred Bezonen Symposium II, Copenhagen, Munksgaard, Copenhagen, pp 468–476

    Google Scholar 

  • Brigthman NW, Hori M, Rapoport SI, Reese TS, Westergaard E (1973) Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152:317–325

    Google Scholar 

  • Broadwell RD, Brightman MW (1976) Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp Neurol 166:257–284

    PubMed  CAS  Google Scholar 

  • Broad well RD, Salcman M (1981) Expanding the definition of the blood-brain barrier to proteins. Proc Natl Acad Sci US 78:7820–7824

    CAS  Google Scholar 

  • Brody MJ, Johnson AK (1980) Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 6. Raven Press, New York, pp 249–292

    Google Scholar 

  • Bulat M, Supek Z (1967) The penetration of 5-hydroxytryptamine through the blood-brain barrier. J Neurochem 14:265–271

    PubMed  CAS  Google Scholar 

  • Bulat M, Supek Z (1968) Passage of 5-hydroxy try ptamine through the blood-brain barrier, its metabolism in the brain and elimination of 5-hydroxyindolacetic acid from the brain tissue. J Neurochem 15:383–389

    PubMed  CAS  Google Scholar 

  • Bundgaard M (1982) Brain barrier systems in the lamprey. I. Ultrastructure and permeability of cerebral blood vessels. Brain Res 240:55–64

    PubMed  CAS  Google Scholar 

  • Bundgaard M, Cserr H (1981) A glial blood-brain barrier in elasmobranchs. Brain Res 226:61–73

    PubMed  CAS  Google Scholar 

  • Casley-Smith JR (1969) An electron microscopical investigation of the permeability of cerebral and retinal capillaries. Experientia 25:845–847

    PubMed  CAS  Google Scholar 

  • Castel M, Sahar A, Erlij D (1974) The movement of lanthanum across barriers in the choroid plexus of the cat. Brain Res 67:178–184

    PubMed  CAS  Google Scholar 

  • Cohen DH, Cabot JH (1979) Toward a cardioavascular neurobiology. Trends Neurosci 3:273–276

    Google Scholar 

  • Cornford EM, Braun LD, Crane PD, Oldendorf WH (1978) Blood-brain barrier restriction of peptides and the low uptake of enkephalins. Endocrinology 103:1297–1323

    PubMed  CAS  Google Scholar 

  • Crone C (1965) Permeability of brain capillaries to non-electrolytes. Acta Physiol Scand 64:407–417

    PubMed  CAS  Google Scholar 

  • Cutler RWP, Barlow CT (1966) The effect of hypercapnia on brain permeability to protein. Arch Neurol 14:54–63

    PubMed  CAS  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. Acta Physiol Scand 62 [Suppl] 232:1–55

    Google Scholar 

  • Delorme P, Gayet J, Grignon G (1970) Ultrastructural study on trans-capillary exchanges in the developing telencephalon of the chicken. Brain Res 22:269–283

    PubMed  CAS  Google Scholar 

  • Dermietzel R, Meller K, Tetzlaff W, Waelsch M. (1977) In vivo and in vitro formation of the junctional complex in choroid epithelium. Cell Tiss Res 181:427441

    CAS  Google Scholar 

  • Dobbing J (1956) The blood-brain barrier. Guy’s Hosp Rep 105:27–38

    CAS  Google Scholar 

  • Dobbing J (1961) The blood-brain barrier. Physiol Rev 41:130–138

    PubMed  CAS  Google Scholar 

  • Dobbing J (1963) The blood-brain barrier: some recent developments. Guy’s Hosp Rep 112:267–286

    CAS  Google Scholar 

  • Dobbing J (1968) The development of the blood-brain barrier. Prog Brain Res 29: 417–427

    PubMed  CAS  Google Scholar 

  • Domer FR, Liu YK, Chandran KB, Krieger KW (1979) Effect of hyperextension- hypoflexion (whiplash) on the function of the blood-brain barrier of rhesus monkeys. Exp Neurol 63:304–310

    PubMed  CAS  Google Scholar 

  • Dow PR, Shinn SL, Ovalle WK Jr (1980) Ultrastructural study of a blood-muscle spindle barrier after systemic administration of horseradish peroxidase. Am J Anat 157:375–388

    PubMed  CAS  Google Scholar 

  • Dupont A, Labrie F, Pelletier G, Puviani R, Coy DH, Coy EJ, Schally AV (1974) Organ distribution of radioactivity and disappearance of radioactivity from plasma after administration of 3H-luteinizing hormone-releasing hormone to mice and rats. Neuroendocrinology 16:65–73

    PubMed  CAS  Google Scholar 

  • Dupont A, Kastin AJ, Labrie F, Pelletier G, Puviani R, Schally AV (1975a) Distribution of radioactivity in the organs of the rat and mouse after injection of (125J) alpha-melanocyte stimulating hormone. J Endocrinol 64:237–241

    PubMed  CAS  Google Scholar 

  • Dupont A, Labrie F, Pelletier G, Puviani R, Coy DH, Schally AV, Kastin AJ (1975b) Distribution of radioactivity in the organs of the rat and mouse after injection of L-(3H)-prolyl-L-leucyl-glycinamide. J Endocrinol 64:243–248

    PubMed  CAS  Google Scholar 

  • Dym M, Fawcett DW (1970) The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod 3:308–326

    PubMed  CAS  Google Scholar 

  • Edström R (1964) Recent developments of the blood-brain barrier concept. Int Rev Neurobiol 7:153–190

    Google Scholar 

  • Ehrlich P (1885) Das Sauerstoff-Bedürfnis des Organismus. Eine farbenanalytische Studie. Hirschwald, Berlin, pp 1–67

    Google Scholar 

  • Eng K, Miselis RR (1981) Polydipsia and abolition of angiotensin-induced drinking after transections of subfornical organ efferent projections in the rat. Brain Res 225:200–206

    PubMed  CAS  Google Scholar 

  • Ermisch A, Landgraf R, Rühle H-J (1982) Neuroactive peptides and blood-brain barrier. Neuroscience [Suppl] 7:54

    Google Scholar 

  • Eto T, Yamamoto T, Omae T (1975) An electron microscope study on permeability in cerebral venules in the rats with hypertensive encephalopathy. Arch Neurol Jpn 38:299–306

    CAS  Google Scholar 

  • Evans BD, Vogel WH (1977) Penetration of some O-and/or N-methylated norepinephrine derivatives through the rat blood-brain barrier. Res Commun Chem Pathol Pharmacol 17:61–76

    PubMed  CAS  Google Scholar 

  • Fawcett DW, Leak LV, HeidgerPM Jr (1970) Electron microscopic observations on the structural components of the blood-testis barrier. J Reprod Fert [Suppl] 10:105–122

    CAS  Google Scholar 

  • Firth JA (1977) Cytochemical localization of the K+ regulation interface between blood and brain. Experientia 33:1093–1094

    PubMed  CAS  Google Scholar 

  • Ford DH (1976) Blood-brain barrier: A regulatory mechanism. Rev Neurosci 2:1–42

    CAS  Google Scholar 

  • Gärtner W (1927) Die Blut-Liquorschranke. Z Biol 86:115–139

    Google Scholar 

  • Gervin SE, Holtzman E (1972) The fate of exogenous peroxidase in the thymus of newborn and young adult mice. J Histochem Cytochem 20:445–462

    PubMed  CAS  Google Scholar 

  • Giacomelli F, Wiener J, Spiro D (1970) The cellular pathology of experimental hypertension. V. Increased permeability of cerebral arterial vessels. Am J Pathol 59: 133–160

    PubMed  CAS  Google Scholar 

  • Goldman H, Murphy S (1981) An analog of ACTH/MSH4–9, ORG-2766 reduces permeability of the blood-brain barrier. Pharmacol Biochem Behav 14:845–848

    PubMed  CAS  Google Scholar 

  • Goldmann EE (1913) Vitalfärbung im Zentralnervensystem: Beitrag zur Physiopathologie des Plexus choriodeus und der Hirnhäute. Abh Königl Preuss Akad Wiss Physikal-Mathem Klasse Berlin 1:1–60

    Google Scholar 

  • Goldstein GW (1979) Relation of potassium transport to oxidative metabolism in isolated brain capillaries. J Physiol (Lond) 286:185–195

    CAS  Google Scholar 

  • Goodner CJ, Berrie MA (1977) The failure of rat hypothalamic tissues to take up labelled insulin in vivo or to respond to insulin in vitro. Endocrinology 191:605–612

    Google Scholar 

  • Gorgas K, Jahnke K (1974) The permeability of blood vessels in the guinea pig cochlea.II. Vessels in the spiral ligament and the stria vascularis. Anat Embryol 146:33–42

    PubMed  CAS  Google Scholar 

  • Grazer FM, Clemente CD (1957) Developing blood-brain barrier to trypan blue. Proc Soc Exp Biol Med 94:758–760

    PubMed  CAS  Google Scholar 

  • Groothuis DR, Vick NA (1982) Brain tumors and the blood-brain barrier. Trends Neurosci 5:232–235

    Google Scholar 

  • Groothuis DR, Fischer JM, Lapin G, Bigner DD, Vick NA (1982) Permeability of different experimental brain tumor models to horseradish peroxidase. J Neuropathol Exp Neurol 41:164–185

    PubMed  CAS  Google Scholar 

  • Grubb RL, Raichle ME (1981) Intraventricular angiotensin II increases brain vascular permeability. Brain Res 210:426–430

    PubMed  CAS  Google Scholar 

  • Hager H (1961) Elektronenmikroskopische Untersuchungen über die Feinstruktur der Blutgefäße und perivaskulären Glia im Säugetiergehirn. Acta Neuropathol 1:9–33

    PubMed  CAS  Google Scholar 

  • Hansson HA, Johansson B, Blomstrand C (1975) Ultrastructural studies on cerebrovascular permeability in acute hypertension. Acta Neuropathol (Berl) 32:187–198

    CAS  Google Scholar 

  • Hardebo JE, Nilsson B (1980) Hemodynamic changes in brain caused by local infusion of hyperosmolar solutions, in particular relation to blood-brain barrier opening. Brain Res 181:49–59

    PubMed  CAS  Google Scholar 

  • Hardebo JE, Owman C (1980) Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface. Ann Neurol 8:1–11

    PubMed  CAS  Google Scholar 

  • Hardebo JE, Edvinsson L, Mackenzie ET, Owman C (1977) Regional brain uptake of noradrenaline following mechanical or osmotic opening of the blood-brain barrier. Acta Physiol Scand 101:342–350

    PubMed  CAS  Google Scholar 

  • Hardebo JE, Falck B, Owman C, Rosengren E (1979a) Studies on the enzymatic blood-brain barrier: Quantitative measurements of DOPA decarboxylase in the wall of micro vessels as related to the parenchyma in various CNS regions. Acta Physiol Scand 105:403–460

    Google Scholar 

  • Hardebo JE, Falck B, Owman C (1979b) A comparative study on the uptake and subsequent decarboxylation of monoamine precursors in cerebral microvessels. Acta Physiol Scand 157:161–167

    Google Scholar 

  • Hicks JT, Albrecht P, Rapoport SI (1976) Entry of neutralizing antibody to measles into brain and cerebrospinal fluid of immunized monkeys after osmotic opening of the blood-brain barrier. Exp Neurol 53:768–789

    PubMed  CAS  Google Scholar 

  • Hofer H (1958) Zur Morphologie der circumventrikulären Organe des Zwischenhirns der Säugetiere. Dtsch Zool Ges Verh, Frankfurt, 8:202–251

    Google Scholar 

  • Hoffmann PL, Walter R, Bulat M (1977) An enzymatically stable peptide with activity in the central nervous system: its penetration through the blood-CSF barrier. Brain Res 122:87–94

    Google Scholar 

  • Horstmann E, Meves H (1959) Die Feinstruktur des molekularen Rindengraus und ihre physiologische Bedeutung. Z Zellforsch Mikroskop Anat 49:569–604

    Google Scholar 

  • Houghten RA, Swann RW, Li CH (1980) ß-endorphin: stability, clearance behavior and entry into the central nervous system after intravenous injection of the tritiated peptide in rats and rabbits. Proc Natl Acad Sci US 77:4588–4591

    CAS  Google Scholar 

  • Houthoff HJ, Go KG, Gerrits PO (1982) The mechanisms of blood-brain barrier impairment by hyperosmolar perfusion. An electron cytochemical study comparing exogenous HRP and endogenous antibody to HRP as tracers. Acta Neuropathol (Berl) 56:99–112

    CAS  Google Scholar 

  • Huang JT (1981) Accumulation of peptides by choroid plexus in vitro: Tyr-Dalagly as a model. Neurochem Res 6:681–689

    PubMed  CAS  Google Scholar 

  • Jacobs JM (1980) Blood barriers in the nervous system studied with horseradish peroxidase. Trends Neurosci 3:187–189

    Google Scholar 

  • Jakobsen J, Malmgren L, Olsson Y (1978) Permeability of the blood-nerve barrier in the streptozotocin-diabetic rat. Exp Neurol 60:277–285

    PubMed  CAS  Google Scholar 

  • Johansson BB (1974a) Blood-brain barrier dysfunction in acute arterial hypertension. Thesis, Göteborg Johansson BB (1974b) Blood-brain barrier dysfunction in the acute arterial hypertension after papaverine-induced vasodilatation. Acta Neurol Scand 50:573–580

    PubMed  CAS  Google Scholar 

  • Johansson BB, Linder LE (1978) Reversibility of the blood-brain barrier dysfunction induced by acute hypertension. Acta Neurol Scand. 57:345–348

    PubMed  CAS  Google Scholar 

  • Johansson BB, Nilsson B (1977) The pathophysiology of the blood-brain barrier dysfunction induced by severe hypercapnia and by epileptic brain activity. Acta Neuropathol (Berl) 38:153–158

    CAS  Google Scholar 

  • Johansson BB, Linder LE, Persson LI (1978) Hypertension-induced protein-leakage in the brain in ethanol-intoxicated conscious and anesthetized rats. Acta Neurol Scand 58:333–339

    PubMed  CAS  Google Scholar 

  • Johnson AK (1975) The role of the cerebral ventricular system in angiotensin-induced thirst. In: Peters G, Fitzsimons JT, Peters-Haefeli L (eds) Control mechanisms of drinking. Springer, Berlin Heidelberg New York, pp 117–122

    Google Scholar 

  • Joo F, Csillik B (1966) Topographical correlation between the hemato-encephalic barrier and the Cholinesterase activity of brain capillaries. Exp Brain Res 1:147–151

    PubMed  CAS  Google Scholar 

  • Joy MD, Lowe RD (1970) Evidence that the area postrema mediates the central cardiovascular response of angiotensin II. Nature 228:1303–1304

    PubMed  CAS  Google Scholar 

  • Kaplan GP, Hartmann BD, Creveling CR (1981) Im mu no hist o chemical localization of catechol-O-methyltransferase in circumventricular organs of the rat: Potential variations in the blood-brain barrier to native catechols. Brain Res 229:323–335

    PubMed  CAS  Google Scholar 

  • Karcsu S, Janeso G, Toth L (1977) Butyrylcholinesterase activity in fenestrated capillaries of the rat area potrema. Brain Res 120:146–150

    PubMed  CAS  Google Scholar 

  • Kastin AJ, Nissen C, Nikolics K, Medzihradszky K, Coy DH, Teplan I, Schally AV. (1976a) Distribution of 3H-alpha-MSH in rat brain. Brain Res Bull 1:19–26

    PubMed  CAS  Google Scholar 

  • Kastin AJ, Nissen C, Schally AV, Coy DH (1976b) Blood-brain barrier, half-time disappearance, and brain distribution for labelled enkephalin and a potent analog. Brain Res Bull 1:5 83–5 89

    Google Scholar 

  • Kastin AJ, Olson RD, Schally AV, Coy DH (1979) CNS effects of peripherally administered brain peptides. Life Sci 25:401–414

    PubMed  CAS  Google Scholar 

  • Kastin AJ, Wade LA, Coy DH, Schally AV, Olson RD (1980) Peptides and the blood- brain barrier. In: Wuttke W, Weindl A, Voigt KH, Dries RR (eds) Brain and pituitary peptides. Karger, Basel, pp 71–78

    Google Scholar 

  • Kastin AJ, Nissen C, Coy DH (1981) Permeability of blood-brain barrier to DSIP peptides. Pharmac Biochem Behav 15:955–959

    CAS  Google Scholar 

  • Kastin AJ, Olson RD, Sandman CA, Coy DH, Zadina JE, Ehrensing RH (1982) CNS actions of peripherally administered peptides: some unresolved issues. In: Changing concepts of the nervous system. Academic Press, New York, pp 757–768

    Google Scholar 

  • Kenny TP, Shivers RR (1974) The blood-brain barrier in a reptile, Anolis carolinensis. Tissue Cell 6:319–333

    CAS  Google Scholar 

  • Klatzo I (1975) Pathophysiologic aspects of cerebral ischaemia. In: Tower DB (ed) The nervous system. Raven Press, New York, pp 313–332

    Google Scholar 

  • Krogh A (1946) The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally. Proc R Soc Lond [Biol] 133:140–200

    CAS  Google Scholar 

  • Landgraf R, Hess J, Ermisch A (1978) The influence of vasopressin on the regional uptake of (3H) orotic acid by rat brain. Acta Biol Med Germ 37:655–658

    PubMed  CAS  Google Scholar 

  • Landgraf R, Ermisch A, Hess J (1979) Indications for a brain uptake of labelled vasopressin and oxytocin and the problem of the blood-brain barrier. Endokrinologie 73:77–81

    PubMed  CAS  Google Scholar 

  • Laursen H, Westergaard E (1977) Enhanced permeability to horseradish peroxidase across cerebral vessels in the rat after portocaval anastomosis. Neuropathol Appl Neurobiol 3:29–43

    Google Scholar 

  • Le Beux Y, Willemot J (1978) Actin-like filaments in the endothelial cells of adultrat brain capillaries. Exp Neurol 58:446–454

    PubMed  Google Scholar 

  • Lee JC (1971) Evolution in the concept of the blood-brain barrier phenomenon. In: Zimmermann HM (ed) Progress in neuropathology. Grune & Stratton, New York, 84–115

    Google Scholar 

  • Lee JC, Olszewski J (1961) Increased cerebrovascular permeability after repeated electroshocks. Neurology (Minneap) 11:515–519

    CAS  Google Scholar 

  • Leonhardt H (1965) Morphologische Grundlagen der Blut-Hirn-Schranke. MMW 19: 438–441

    CAS  Google Scholar 

  • Lewandowsky M (1900) Zur Lehre der Cerebrospinalflüssigkeit. Z Klin Med 40: 480–494

    Google Scholar 

  • Loescher W, Frey H-H (1982) Transport of GABA and the blood-CSF interface. J Neurochem 38:1072–1079

    CAS  Google Scholar 

  • Lorenzo AV, Shirahige I, Liang M, Barlow CF (1972) Temporary alteration of cerebrovascular permeability to plasma protein during drug-induced seizures. Am J Physiol 233:268–277

    Google Scholar 

  • Mann J (1983) Possible physiological role of circulating angiotensin II on the central nervous system. Acta Endocrinol 102 [Suppl] 253:10

    Google Scholar 

  • Marynick SP, Havens II WN, Ebert MH, Loriaux L (1976) Studies on the transfer of steroid hormones across the blood-cerebrospinal fluid barrier in the rhesus monkey. Endocrinology 99:400–405

    PubMed  CAS  Google Scholar 

  • Mayer SE, Maichel RP, Brodec BB (1959) Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid. J Pharmacol 127:205–211

    CAS  Google Scholar 

  • Maynard EA, Schultz RC, Pease DC (1957) Electron microscopy of the vascular bed of rat cerebral cortex. Am J Anat 100:409–421

    PubMed  CAS  Google Scholar 

  • Merin M, Höllt V, Przewlocki R, Herz A (1980) Low penetration of systemically administered human /3-endorphin into rabbit brain measured by radioimmunoassays differentiating human and rabbit β-endorphin. Life Sci 27:281–289

    PubMed  CAS  Google Scholar 

  • Milhorat TH, Hammock MK, Fenstermacher JD, Rail DP, Levin VA (1971) Cerebrospinal fluid production by the choroid plexus and brain. Science 173:330–332

    PubMed  CAS  Google Scholar 

  • Miselis RR, Shapiro RE, Hand PJ (1979) Subfornical organ efferent systems for control of body water. Science 207:1022–1025

    Google Scholar 

  • Mitchell J, Weller RO, Evans H (1979) Reestablishment of the blood-brain barrier to peroxidase following cold injury to mouse cortex. Acta Neuropathol (Berl) 46: 45–49

    CAS  Google Scholar 

  • Monnier M, Dudler L, Gächter R, Schoenenberger GA (1977) Transport of the synthetic peptide DSIP through the blood-brain barrier in the rabbit. Experientia 33: 1609–1610

    PubMed  CAS  Google Scholar 

  • Morest DK (1960) A study of the structures of the area postrema with Golgi methods. Am J Anat 107:291–303

    PubMed  CAS  Google Scholar 

  • Murabe Y, Nishida K, Sano Y (1981) Cells capable of uptake of horseradish peroxidase in some circumventricular organs of the cat and rat. Cell Tiss Res 219:85–92

    CAS  Google Scholar 

  • Nagy Z, Mathieson G, Hüttner I (1979a) Blood-brain barrier opening to horseradish peroxidase in acute arterial hypertension. Acta Neuropathol (Berl) 48:45–53

    CAS  Google Scholar 

  • Nagy Z, Pappius HM, Mathieson G, Hüttner I (1979b) Opening of tight junctions in cerebral endothelium. I. Effect of hyperosmolar mannitol infused through the internal carotid artery. J Comp Neurol 185:569–578

    PubMed  CAS  Google Scholar 

  • Niessing K, Rollhäuser H (1954) Über den submikroskopischen Aufbau des Grund-häutchens der Hirnkapillaren. Z Zellf 39:431–446

    Google Scholar 

  • Oldendorf WH (1970) Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res 24:372–376

    PubMed  CAS  Google Scholar 

  • Oldendorf WH (1974) Blood-brain barrier permeability to drugs. Ann Rev Pharmacol 14:239–248

    CAS  Google Scholar 

  • Oldendorf WH (1977) The blood-brain barrier. Exp Eye Res [Suppl] 177–190

    Google Scholar 

  • Oldendorf WH, Szabo J (1976) Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol 230:94–98

    PubMed  CAS  Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417

    PubMed  CAS  Google Scholar 

  • Olsson Y, Klatzo I (1968) Blood-brain barrier to albumin in embryonic newborn and adult rats. Acta Neuropathol 10:117–122

    PubMed  CAS  Google Scholar 

  • Owman C, Edvinsson L, Falck B, Nielsen KC (1974) Amine mechanisms in brain vessels, with particular reference to autonomic innervation and blood-brain barrier. In: Cervos-Navarro J (ed) Pathology of cerebral microcirculation, de Gruyter, Berlin, pp 184–199

    Google Scholar 

  • Pardridge WM (1979) Carrier-mediated transport of thyroid hormones through the rat blood-brain barrier: Primary role of albumin-bound hormone. Endocrinology 105: 605–612

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Mietus LJ (1979) Regional blood-brain barrier transport of steroid hormones. J Neurochem 33:579–581

    PubMed  CAS  Google Scholar 

  • Pardridge WH, Mietus LJ (1980) Transport of thyroid hormones through the blood- brain barrier of the newborn rabbit; primary role of protein-bound hormone. Endocrinology 107:1705–1710

    PubMed  CAS  Google Scholar 

  • Pardridge WH, Mietus LJ (1981) Enkephalin and blood-brain barrier: studies of binding and degradation in isolated brain microvessels. Endocrinology 109:1138–1143

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Connor JD, Crawford IL (1975) Permeability changes in the blood-brain barrier: causes and consequences. CRC Crit Rev Toxicol 3:159–199

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Moeller TL, Mietus LJ, Oldendorf WH (1980) Blood-brain barrier transport and brain sequestration of steroid hormones. Endocrinol Metab 2:E96–El02

    Google Scholar 

  • Pardridge WM, Frank HJ, Cornford EM, Braun LD, Crane PD, Oldendorf WH (1981) Neuropeptides and the blood-brain barrier. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven Press, New York, pp 321–328

    Google Scholar 

  • Paulson OB, Hertz MM (1978) Blood-brain barrier permeability during shortlasting intravascular hyperosmolarity. Eur J Clin Invest 8:391–396

    PubMed  CAS  Google Scholar 

  • Pelletier G, Labrie F, Kastin AJ, Coy D, Schally AV (1975a) Radioautographic localization of radioactivity in rat brain after intraventricular or intracarotid injection of 3(H)-L-prolyl-leucyl-glycinamide. Pharmacol Biochem Behav 3:675–679

    PubMed  CAS  Google Scholar 

  • Pelletier G, Labrie F, Kastin AJ, Schally AV (1975b) Radioautographic localization of radioactivity in rat brain after intracarotid injection of (D-alpha-melanocyte- stimulating hormone. Pharmacol Biochem Behav 3:671–674

    PubMed  CAS  Google Scholar 

  • Pentschew A, Garro F (1966) Lead encephalomyelopathy of the suckling rat and its implications on the prophyrinopathic nervous diseases, with special reference to the permeability disorders of the nervous system’s capillaries. Acta Neuropathol 6: 266–278

    PubMed  CAS  Google Scholar 

  • Petito CK, Schaefer JA, Plum F (1977) Ultrastructural characteristics of the brain and blood-brain barrier in experimental seizures. Brain Res 127:251–267

    PubMed  CAS  Google Scholar 

  • Peyrand-Waitzenegger M, Savina A, Laparra J, Morfin R (1979) Blood-brain barrier for epinephrine in the eel (Anguilla anguilla L.). Comp Biochem Physiol 63C:35–38

    Google Scholar 

  • Pezalla PD, Lis M, Seidah NG, Chretien M (1978) Lipotropin, melanotropin and endorphin: In vivo catabolism and entry into cerebrospinal fluid. J Can Sci Neurol 5: 153–188

    Google Scholar 

  • Pfaff D, Keiner M (1973) Atlas of estradiol-concentrating cells in the central nervous system of the female rat. J Comp Neurol 151:121–158

    PubMed  CAS  Google Scholar 

  • Phillips MI, Felix D (1976) Specific angiotensin II receptive neurons in the cat subfornical organ. Brain Res 109:531–540

    PubMed  CAS  Google Scholar 

  • Pino RM, Essner E (1981) Permeability of rat choriocapillaris to hemoproteins. Restriction of tracers by a fenestrated endothelium. J Histochem Cytochem 29:281–290

    PubMed  CAS  Google Scholar 

  • Rachmanov A (1925) Intravitalfärbung der Zellen der vegetativen Hirnzentren. J Neuropathol 18:5–11

    Google Scholar 

  • Raichle ME, Grubb RL Jr (1978) Regulation of brain water permeability by centrally-released vasopressin. Brain Res 143:191–194

    PubMed  CAS  Google Scholar 

  • Raichle ME, Grubb RL, Eichling JO (1978) Central neuroendocrine regulation of brain water permeability. CIBA Found Symp 56:219–235

    PubMed  CAS  Google Scholar 

  • Rapoport SI (1975) Experimental modification of blood-brain barrier permeability by hypertonic solutions, convulsions, hypercapnia and acute hypertension. In: Fluid environment of the brain. Academic Press, New York, pp 61–80

    Google Scholar 

  • Rapoport SI (1976) The blood-brain barrier in physiology and medicine. Raven Press, New York

    Google Scholar 

  • Rapoport SI, Thompson HK (1973) Osmotic opening of the blood-brain barrier in the monkey without associated neurological deficits. Science 180:971

    PubMed  CAS  Google Scholar 

  • Rapoport SI, Hori M, Klatzo I (1971) Reversible osmotic opening of the blood-brain barrier. Science 173:1026–1028

    PubMed  CAS  Google Scholar 

  • Rapoport SI, Ohno K, Pettigrew KD (1979) Blood-brain barrier permeability in senescent rats. J Gerontol 34:162–169

    PubMed  CAS  Google Scholar 

  • Rapoport SI, Klee WA, Pettigrew KD, Ohno K (1980) Entry of peptides into the central nervous system. Science 207:84–86

    PubMed  CAS  Google Scholar 

  • Redding TW, Schally AV (1971) The distribution of radioactivity following the administration of labelled thyrotropin-releasing hormone (TRH) in rats and mice. Endocrinology 89:1075–1081

    PubMed  CAS  Google Scholar 

  • Redding TW, Schally AV (1973) The distribution, half-life, and excretion of tritiated luteinizing hormone-releasing hormone (LH-RH) in rats. Life Sci 12:23–32

    CAS  Google Scholar 

  • Reiter RJ (1981) The mammalian pineal gland: structure and function. Am J Anat 162:287–313

    PubMed  CAS  Google Scholar 

  • Richards JG (1978) Permeability of intercellular junctions in brain epithelia and endo- thelia to exogenous amine: cytochemical localization of extracellular 5-hydroxy-dopamine. J Neurocytol 7:61–70

    PubMed  CAS  Google Scholar 

  • Rudman D, Kutner MH (1978) Melanotropic peptides increase permeability of plasma cerebrospinal fluid barrier. Am J Physiol 234:E327–E332

    PubMed  CAS  Google Scholar 

  • Rühle JH, Ermisch A (1978) Autoradiographic localization of 3H-oxytocin in the rat brain. In: Bargman W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Springer, Berlin Heidelberg New York, pp 275–278

    Google Scholar 

  • Sachs C (1973) Development of the blood-brain barrier for 6-hydroxydopamine. J Neurochem 20:1753–1760

    PubMed  CAS  Google Scholar 

  • Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Solokoff L (1978) Measurements of local cerebral blood-flow with iodo (C14 antipyrine). Am J Physiol 234: H59–H66

    PubMed  CAS  Google Scholar 

  • Saunders NR, Møllgard K (1981) The natural internal environment of the developing brain. Trends Neuro Sci 4:56–60

    CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1981) Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214: 685–687

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LS (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or the spinal cord in the rat. J Comp Neurol 205:260–272

    PubMed  CAS  Google Scholar 

  • Schelling P, Hutchinson JS, Ganten U, Sponer G, Ganten D (1976) Impermeability of the blood-cerebrospinal fluid barrier for angiotensin II in rats. Clin Sci 51:399S–402S

    CAS  Google Scholar 

  • Schelling P, Ganten D, Heckl R, Hayduk K, Hutchinson JS, Sponer G, Ganten U (1977) On the origin of angiotensin-like peptides in cerebrospinal fluid. In: Buckley JP, Ferrario CM (eds) Central actions of angiotensin and related hormones. Pergamon Press, New York, pp 519–526

    Google Scholar 

  • Schelling P, Ganten U, Sponer G, Unger T, Ganten D (1980) Components of the renin angiotensin system in the cerebrospinal fluid of rats and dogs with special consideration of the origin and fate of angiotensin II. Neuroendocrinology 31: 297–308

    PubMed  CAS  Google Scholar 

  • Schräger EE, Osborne MJ, Johnson AK, Epstein AN (1975) Entry of angiotensin into cerebral ventricles and circumventriuclar structures. In: Davis DS, Reid JL (eds) Central action of drugs in blood pressure regulation. University Park Press, London, pp 65–67

    Google Scholar 

  • Shabo A, Maxwell DS (1972) The blood-aqueous barrier to tracer protein: a light and electron microscopic study of the primate ciliary process. Microvasc Res 4: 142–158

    Google Scholar 

  • Shinowara NL, Michel ME, Rapoport SI (1982) Morphological correlates of permeability in the frog perineurium: Vesicles and transcellulär channels. Cell Tiss Res 227:11–22

    CAS  Google Scholar 

  • Shivers RR (1979) The effect of hyperglycemia on brain capillary permeability in the lizard, anolis carolinensis. A freeze-fracture analysis of blood-brain barrier pathology. Brain Res 170:509–522

    PubMed  CAS  Google Scholar 

  • Sibley CP, Baumann KF, Firth JA (1982) Permeability of the fetal capillary endothelium of the guinea pig placenta to haem proteins of various molecular size. Cell Tiss Res 223:165–178

    CAS  Google Scholar 

  • Sofroniew MV, Schrell U (1981) Evidence for a direct projection from oxytocin and vasopressin neurons in the hypothalamic paraventricular nucleus: Immunohistochemical visualization of both the horseradish peroxidase transported and the peptide produced by the same neurons. Neurosci Lett 22:211–217

    Google Scholar 

  • Solomon LS (1974) Failure of buffered 5-hydroxytryptamine to increase brain capillary permeability to albumin in monkeys. J Neurosurg 40:717–725

    PubMed  CAS  Google Scholar 

  • Somberg JC, Smith TW(1979) Localization of the neurally mediated arrhythmogenic properties of digitalis. Science 204:321–323

    PubMed  CAS  Google Scholar 

  • Spatz H (1934) Die Bedeutung der vitalen Färbung für die Lehre vom Stoffaustausch zwischen dem Zentralnervensystem und dem übrigen Körper. Arch Psychiatr Nervenkr 191:267–358

    Google Scholar 

  • Sterba G (1969) Morphologie und Funktion des Subcommissuralorgans. In: Sterba G (ed) Zirkumventrikuläre Organe und Liquor. Fischer, Jena, pp 17–32

    Google Scholar 

  • Stumpf WE (1975) The brain: an endocrine gland and hormone target. In: Stumpf WE, Grant LD (eds) Anatomical neuroendocrinology. Karger, Basel

    Google Scholar 

  • Unger T, Ganten D, Lang RE, Rascher W (1981) Brain peptides and blood pressure control. Trends Pharmacol Sci 2:289–292

    CAS  Google Scholar 

  • van Deurs B (1976) Choroid plexus absorption of horseradish peroxidase from the cerebral ventricles. J Ultrastruct Res 55:400–411

    PubMed  Google Scholar 

  • van Deurs B (1977) Vesicular transport of horseradish peroxidase from brain to blood in segments of the cerebral micro vasculature in adult mice. Brain Res 124:1–8

    PubMed  CAS  Google Scholar 

  • van Deurs B, Amtorp O (1978) Blood-brain barrier in rats to the hemepeptide micro-peroxidase. Neuroscience 3:737–748

    PubMed  Google Scholar 

  • van Harreveld AV, Crowell J, Machotra SK (1965) A study of extracellular space in central nervous tissue by freeze substitution. J Cell Biol 25:117–137

    Google Scholar 

  • van Houten M, Posner I (1979) Insulin binds to brain vessels in vivo. Nature 282: 623–625

    PubMed  Google Scholar 

  • van Houten M, Posner BI, Kopriwa BM, Brawer JR (1979) Insulin-binding sites in the rat brain: in vivo localization to the circumventricular organs by quantitative radio autography. Endocrinology 105:666–673

    PubMed  Google Scholar 

  • van Houten M, Schiffrin EL, Mann JFE, Posner BI, Boucher R (1980) Radioautographic localization of specific binding sites for blood-borne angiotensin II in the rat brain. Brain Res 186:480–485

    PubMed  Google Scholar 

  • Vegge T (1972) A blood-aqueous barrier to small molecules in the ciliary process of the vervet monkey(Cercopithecus aethiops). Z Zellforsch 135:483–489

    PubMed  CAS  Google Scholar 

  • Verhoef J, Witter A (1976) In vivo fate of a behaviorally active ACTH 4–9 analog in rats after systemic administration. Pharmacol Biochem Behav 4:583–590

    PubMed  CAS  Google Scholar 

  • Vitale R, Fawcett DW, Dym M (1973) The normal development of the blood-testis barrier and the effects of clomiphene and estrogen treatment. Anat Ree 176:333–344

    CAS  Google Scholar 

  • Volicer H, Loew CG (1971) Penetration of angiotensin II into the brain. Neuropharmacol 10:631–636

    CAS  Google Scholar 

  • Wakai S, Hirokawa N (1978) Development of the blood-brain barrier to horseradish peroxidase in the chick embryos. Cell Tiss Res 195:195–203

    CAS  Google Scholar 

  • Walter FK (1933) Die allgemeinen Grundlagen des Stoffaustausches zwischen dem Zentralnervensystem und dem übrigen Körper. Arch Psychiatr Nervenkr 101:195–230

    Google Scholar 

  • Walter FK (1935) Das Problem der Blut-Hirn Schranke. Fortschr Neurol Psychiatr 7: 213–223

    Google Scholar 

  • Wang SC, Borison HL (1952) A new concept of organization of the central emetic mechanism: Recent studies on the sites of action of apomorphine, copper sulfate and cardiac glykosides. Gastroenterology 22:1–12

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe H, Axelrod J, Tomchik R (1959) Blood-brain barrier for adrenaline.Science 129:1226–1227

    CAS  Google Scholar 

  • Weindl A (1973) Neuroendocrine aspects of circumventricular organs. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology. Oxford University Press, New York London, pp 3–32

    Google Scholar 

  • Weindl A (1974) Structural and functional investigations on the mammalian organum vaseulosum of the lamina terminalis. Thesis, University of Rochester 186 A.Weindl: Blood-Brain Barrier andCirculating Hormones

    Google Scholar 

  • Weindl A, Joynt RJ (1972) The median eminence as a circumventricular organ. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction: Median eminence, structure and function. Karger, Basel, pp 280–297

    Google Scholar 

  • Weindl A, Joynt RJ (1973) Barrier properties of the subcommissural organ. Arch Neurol 29:16–22

    PubMed  CAS  Google Scholar 

  • Weindl A, Schinko I (1975) Evidence by scanning electron microscopy for ependymal secretion into the cerebrospinal fluid and formation of Reissner’s fiber by the subcommissural organ. Brain Res 88:319–324

    PubMed  CAS  Google Scholar 

  • Weindl A, Schinko I (1980) Zirkumventrikuläre Organe und Ventrikelsystem. In: Dommasch D, Mertens HG (eds) Cerebrospinalflüssigkeit-CSF. Thieme, Stuttgart New York, pp 66–78

    Google Scholar 

  • Westergaard E (1975a) Enhanced vesicular transport of exogenous peroxidase across cerebral vessels, induced by serotonin. Acta Neuropathol (Berl) 32:42–97

    Google Scholar 

  • Westergaard E (1975b) The effect of serotonin, norepinephrine and cyclic AMP on the blood brain barrier. J Ultrastruct Res 50:383

    Google Scholar 

  • Westergaard E (1977) The blood-brain barrier to horseradish peroxidase under normal and experimental conditions. Acta Neuropathol (Berl) 39:181–187

    CAS  Google Scholar 

  • Westergaard E (1978) The effect of serotonin on the blood-brain barrier to proteins.J Neural Transmission [Suppl] 14:9–15

    CAS  Google Scholar 

  • Westergaard E, Hertz MM, Bolwig TG (1978) Increased permeability to horseradish peroxidase across cerebral vessels, evoked by electrically induced seizures in the rat. Acta Neuropathol (Berl) 41:73–80

    CAS  Google Scholar 

  • Willumsen NBS, Bie P (1969) Tissue to plasma radioactivity in the rat hypothalamo- hypophyseal system after intravenous injection of 3 H-lycine8-vasopressin and 3H- mannitol. Acta Endocrinol 60:389–400

    PubMed  CAS  Google Scholar 

  • Wislocki GB, Putnam TJ (1920) Note on the anatomy of the area postrema. Anat Ree 19:281–287

    Google Scholar 

  • Wolff J (1963) Beiträge zur Ultrastruktur der Kapillaren in der normalen Großhirnrinde. Z Zellf 60:409–431

    CAS  Google Scholar 

  • Yudilevich DC, de Rosa N, Sepülveda FM (1972) Facilitated transport of amino acids through the blood-brain barrier of the dog studied on a single capillary circulation. Brain Res 44:569–578

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weindl, A. (1983). The Blood-Brain Barrier and its Role in the Control of Circulating Hormone Effects on the Brain. In: Ganten, D., Pfaff, D. (eds) Central Cardiovascular Control. Current Topics in Neuroendocrinology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68490-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68490-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68492-0

  • Online ISBN: 978-3-642-68490-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics