Skip to main content

Centrally Acting Drugs as a Tool to Study Central Mechanisms of Blood Pressure Control

  • Conference paper
Central Cardiovascular Control

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 3))

Abstract

The importance of adrenergic and of serotonergic mechanisms and of gamma-amino-butyric acid in regulating blood pressure is reviewed in this article using centrally acting antihypertensive agents as tools. Details on physiological aspects of blood pressure control have been reviewed by Chalmers (1975) or Korner and Angus (1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonaccio MJ, Halley J (1976) Studies on the mechanism and brainstem site of action of the hypotensive, bradycardic and reflex-enhancing actions of clonidine in cats. Fed Proc 35:323

    Google Scholar 

  • Antonaccio MJ, Robson RD (1973) Cardiovascular effects of 5-hydroxytryptophan in anaesthetized dogs. J Pharmacol 25:495–497

    CAS  Google Scholar 

  • Antonaccio MJ, Taylor DG (1977a) Reduction in blood pressure, sympathetic nerve discharge and centrally evoked pressor responses by methysergide in anaesthetized cats. Eur J Pharmacol 42:331–338

    PubMed  CAS  Google Scholar 

  • Antonaccio MJ, Taylor DG (1977b) Involvement of central GABA receptors in the regulation of blood pressure and heart rate of anaesthetized cats. Eur J Pharmacol 46:283–287

    PubMed  CAS  Google Scholar 

  • Antonaccio MJ, Kelly E, Halley J (1975) Centrally mediated hypotension and bradycardia by methysergide in anaesthetized dogs. Eur J Pharmacol 33:107–117

    PubMed  CAS  Google Scholar 

  • Antonaccio MJ, Kerwin L, Taylor DG (1978) Effects of central GABA receptor agonism and antagonism on evoked diencephalic cardiovascular responses. Neuropharmacology 17:597–603

    PubMed  CAS  Google Scholar 

  • Awapara J, Landon AJ, Fuerst R, Seale B (1950) Free γ-amino-butyric acid in brain. J Biol Chem 187:35–39

    PubMed  CAS  Google Scholar 

  • Baum T, Becker FT (1982a) Hypotensive and postural effects of the γ-aminobutyric acid agonist muscimol and of clonidine. J Cardiovasc Pharmacol 4,2:165–169

    PubMed  CAS  Google Scholar 

  • Baum T, Becker FT (1982b) Alpha-adrenergic and 5-hydroxytryptaminergic receptor stimulants as new antihypertensive drugs with observations on involvement of opiate receptors. Clin Exp Hypertens - Theory and Practice A4 (1–2):235–248

    Google Scholar 

  • Baum T, Shropshire AT (1973) Reduction of sympathetic outflow by central administration of L-dopa, dopamine and norepinephrine. Neuropharmacology 12:49–56

    PubMed  CAS  Google Scholar 

  • Baum T, Shropshire AT (1975) Inhibition of efferent sympathetic nerve activity by 5-hydroxytryptophan and centrally administered 5-hydroxytryptamine. Neuropharmacology 14:227–233

    PubMed  CAS  Google Scholar 

  • Berthelsen S, Pettinger WA (1977) A functional basis for classification of α-adrenergic receptors. Life Sci 21:595–606

    PubMed  CAS  Google Scholar 

  • Bhargava KP, Tangr K (1959) The central vasomotor effect of 5-hydroxytryptamine. Br J Pharmacol 14:411–414

    CAS  Google Scholar 

  • Bhargava KP, Bhattacharya SS, Srimal RC (1964) Central cardiovascular actions of γ-aminobutyric acid. Br J Pharmacol 23:383–390

    CAS  Google Scholar 

  • Blessing WW, Chalmers JP (1979) Direct projections of dopaminergic neurons from hypothalamus to spinal cord. Neurosci Lett 11:35–40

    PubMed  CAS  Google Scholar 

  • Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: A topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    PubMed  CAS  Google Scholar 

  • Boissier JR, Giudicelli JF, Fichelle J, Schmitt H, Schmitt H (1968) Cardiovascular effects of 2-(2,6-dichlorphenylamino)-2-imidazoline hydrochloride (St 155). I. Peripheral sympathetic system. Eur J Pharmacol 2:333–339

    PubMed  CAS  Google Scholar 

  • Bolme P, Fuxe K (1977) Possible involvement of GABA mechanisms in central cardiovascular and respiratory control. Studies on the interaction between diazepam, picrotoxin, and clonidine. Med Biol 55:301–309

    PubMed  CAS  Google Scholar 

  • Bolme P, Corrodi H, Fuxe K, Hökfelt T, Lidbrink P, Goldstein M (1974) Possible involvement of central adrenaline neurons in vasomotor and respiratory control. Studies with clonidine and its interactions with piperoxane and yohimbine. Eur J Pharmacol 28:89–94

    PubMed  CAS  Google Scholar 

  • Bousquet P, Guertzenstein PG (1973) Localization of the central cardiovascular action of clonidine. Br J Pharmacol 49:573–579

    PubMed  CAS  Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1981a) The nucleus reticularis lateralis: A region highly sensitive to clonidine. Eur J Pharmacol 69:389–392

    PubMed  CAS  Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1981b) The ventromedullary hypotensive effect of muscimol in the anaesthetized cat. Clin Exp Hypertens 3(2): 195–205

    PubMed  CAS  Google Scholar 

  • Buckingham RE, Hamilton TC, Robson D (1976) Effect of intracerebroventricular 5,6-dihydroxytryptamine on blood pressure of spontaneously hypertensive rats. Eur J Pharmacol 36:431–437

    PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1962) In-vivo decarboxylation of a-methyl dopa and α-me-thyl metatyrosine. Acta Physiol Scand 54:87–94

    PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-dihydroxyphenylamine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200n

    PubMed  CAS  Google Scholar 

  • Cavero I, Roach AG (1980) Effects of clonidine on canine cardiac neuroeffector structures controlling heart rate. Br J Pharmacol 70:269–276

    PubMed  CAS  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1976) Noradrenergic neurons of the locus coeruleus: Inhibition of epinephrine and activation by the a-antagonist piperoxan. Brain Res 112:413

    PubMed  CAS  Google Scholar 

  • Chahl LA, Walker SB (1980) The effect of baclofen on the cardiovascular system of the rat. Br J Pharmacol 69:631–637

    PubMed  CAS  Google Scholar 

  • Chalmers JP (1975) Neuropharmacology of central mechanisms regulating pressure. In: Davies DS, Reid JL (eds) Central action of drugs in blood pressure regulation. Pitman Medical, London, pp 36–59

    Google Scholar 

  • Chase LK, Ng TN, Colburn RW, Kopin IJ (1972) Release of (3H) dopamine by L-5-hydroxytryptophan. Brain Res 45:499–505

    PubMed  Google Scholar 

  • Cheramy E, Nieoullon A, Glowinski J (1978) GABA-ergic processes involved in the control of dopamine release from nigrostriatal dopaminergic neurons in the cat. Eur J Pharmacol 48:281–295

    PubMed  CAS  Google Scholar 

  • Collis MG, Vanhoutte PM (1977) Vascular reactivity of isolated perfused kidneys from male and female spontaneously hypertensive rats. Circ Res 41:759–767

    PubMed  CAS  Google Scholar 

  • Collis MG, Vanhoutte PM (1981) Studies on the mechanism of tachyphylaxis to 5-hydroxytryptamine in perfused kidneys from spontaneously hypertensive and normotensive rats. J Cardiovasc Pharmacol 3:229–235

    PubMed  CAS  Google Scholar 

  • Constantine JW, McShane WK (1968) Analysis of the cardiovascular effects of 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride (Catapres). Eur J Pharmacol 4:109–123

    PubMed  CAS  Google Scholar 

  • Costa E (1981) Molecular mechanisms for the modulation of GABAergic transmission. Proc Int Workshop Neuropharmacology, Taipei 1981. In: Lee CY (ed) Advances in neuropharmacology. Academia Simica, Taipei, pp 123–131

    Google Scholar 

  • Costall B, Naylor RJ (1981) Minireview: The hypothesis of different dopamine receptor mechanisms. Life Sci 28:215–229

    PubMed  CAS  Google Scholar 

  • Crawley JN, Maas JW, Roth RH (1980) Evidence against specificity of electrical stimulation of the nucleus locus coeruleus in activating the sympathetic nervous system in the rat. Brain Res 183:301–311

    PubMed  CAS  Google Scholar 

  • Curtis DR (1979) GABAergic transmission in the mammalian central nervous system. In: Krogsgaard-Larsen P, Scheel-Krüger J, Kofod H (eds) GABA-neurotransmitters. Munksgaard, Copenhagen, pp 17–27

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol Scand 62 [Suppl] 232:50–51

    Google Scholar 

  • Dahlström A, Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system: II. Experimental induced changes in the intraneuronal amine levels of bulbospinal neuron system. Acta Physiol Scand 64 [Suppl] 247: 1–36

    Google Scholar 

  • Davies J, Watkins JC (1974) The action of β-phenyl-GABA derivatives on neurons of the cat cerebral cortex. Brain Res 70:501–505

    PubMed  CAS  Google Scholar 

  • Day MD, Rand MJ (1963) A hypothesis for the mode of action of a-methyldopa in relieving hypertension. J Pharmacol 15:221–224

    CAS  Google Scholar 

  • De Cree J, Geukens H, De Cock W, Verhaegen H (1981) The antihypertensive effects of a new selective 5-HT2-receptor blocking agent (R41 468). Eighth Scientific Meeting of the International Society of Hypertension, Milan, Italy, Abstract 351

    Google Scholar 

  • De Feudi FV (1981) Recent studies on the pharmacology of GABA: therapeutic perspectives. TIPS, May VI-IX

    Google Scholar 

  • de Jong W (1974) Noradrenaline central inhibitory control of blood pressure and heart rate. Eur J Pharmacol 29:179–181

    PubMed  Google Scholar 

  • de Jong W, Nijkamp FP (1976) Centrally induced hypotension and bradycardia after administration of alpha-methyl-noradrenaline into the area of the nucleus tractus soltiarii of the rat. Br J Pharmacol 58:593–598

    PubMed  Google Scholar 

  • Dhumal VR, Gulati AA, Bhavsar VH (1980) Central hypotensive effect of γ-amino-butyric acid in anaesthetized dogs. J Pharm Pharmacol 32:724–725

    PubMed  CAS  Google Scholar 

  • DiMicco JA (1978) Neurocardiovascular effects of the GABA antagonists picrotoxin and bicuculline in the cat: evidence for involvement of GABA in central cardiovascular control. P. Thesis, Georgetown University

    Google Scholar 

  • DiMicco JA, Prestel T, Pearl DL (1976) Cardiovascular changes produced by stimulation of the central nervous system with picrotoxin. Fed Proc 35:981

    Google Scholar 

  • Doba N, Reis DJ (1973) Acute fulminating neurogenic hypertension produced by brainstem lesions in the rat. Circ Res 32:584–593

    PubMed  CAS  Google Scholar 

  • Doherty JD, Hattox SE, Snead OC, Roth RH (1978) Identification of endogenous γ-hydroxybutyrate in human and bovine brain and its regional distribution in human, guinea pig and rhesus monkey brain. J Pharmacol Exp Ther 207:130–139

    PubMed  CAS  Google Scholar 

  • Dollery CT, Reidl JL (1973) Central noradrenergic neurones and the cardiovascular actions of clonidine in the rabbit. Br J Pharmacol 47:206–216

    PubMed  CAS  Google Scholar 

  • Dunkley B, Sanghvi I, Friedman E, Gershon S (1972) Comparison of behavioral and cardiovascular effects of L-Dopa and 5-HTP in conscious dogs. Psychopharmacol (Berlin) 26:161–172

    CAS  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxy-tyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38:1236–1239

    PubMed  CAS  Google Scholar 

  • Elliot KAC, Hobbiger F (1959) Gamma aminobutyric acid: Circulatory and respiratory effects in different species; reinvestigation of the anti-strychnine action in mice. J Physiology 146:70–84

    Google Scholar 

  • Enna SJ (1981) GABA receptors. TIPS March:62–64

    Google Scholar 

  • Enna SJ, Maggi A (1979) Minireview: Biochemical pharmacology of GABAergic agonists. Life Sci 24:1727–1738

    PubMed  CAS  Google Scholar 

  • Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds with formaldehyde. J Histochem Cytochem 10:348–354

    CAS  Google Scholar 

  • Finch L (1975) The cardiovascular effects of intraventricular 5,6-dihydroxytrypt-amine in conscious rats. Clin Exp Pharmacol Physiol 2:503–505

    PubMed  CAS  Google Scholar 

  • Feuerstein G, Yamaguchi I, Kopin IJ (1981) Effect of GABA agonists and antagonists on cardiovascular and sympathetic responses in SHR and WKY rats. Clin Exp Hypertens 3(2):207–218

    PubMed  CAS  Google Scholar 

  • Florez J, Armigo JA (1974) Effect of central inhibition of the l-aminoacid decarboxylase on the hypertensive action of 5-HT precursors in rats. Eur J Pharmacol 26: 108–110

    PubMed  CAS  Google Scholar 

  • Fuentes JA, Ordaz A, Neff NH (1979) Central mediation of the antihypertensive effect of pargyline in spontaneously hypertensive rats. Eur J Pharmacol 57:21–27

    PubMed  CAS  Google Scholar 

  • Fuller RW, Holland OR, Yen TJ, Bemis KG, Stamm NB (1979) Antihypertensive effects of fluoxetine and 1,5-hydroxytryptophan in rats. Life Sci 25:1237–1242

    PubMed  CAS  Google Scholar 

  • Fuller RW, Yent TT, Stamm NB (1981) Lowering on blood pressure by direct and indirect acting serotonin in spontaneously hypertensive rats. Clin Exp Hypertens 3(3):497–508

    PubMed  CAS  Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine neurons in the CNS. IV. The distribution of monoamine terminals in the CNS. Acta Physiol Scand 64 [Suppl 247]:38–85

    Google Scholar 

  • Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptors. Br J Pharmacol 12:323–328

    CAS  Google Scholar 

  • Gillis R, Williford DJ, Souza JD, Quesi JA (1982) Central cardiovascular effects produced by the GABA receptor agonist drug THIP. Neuropharmacology 21: 595–597

    Google Scholar 

  • Goldberg LI (1972) Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol Rev 24:1–29

    PubMed  CAS  Google Scholar 

  • Gomes C, Flygt C, Henning M, Norin L, Svensson TH, Trolin G (1976) Gamma-hydroxybutyric acid: Cardiovascular effects in the rat. J Neural Transm 38:123–129

    PubMed  CAS  Google Scholar 

  • Gothert M, Klupp N (1978) Cardiovascular effects of neurotoxic indolethylamines. Ann NY Acad Sci 305:457–477

    PubMed  CAS  Google Scholar 

  • Greenberg DA, U’Prichard DC, Snyder SH (1976) Alpha-noradrenergic receptor binding in mammalian brain: Different labelling of agonist and antagonist states. Life Sci 19:69–76

    PubMed  CAS  Google Scholar 

  • Gyermek L (1961) 5-Hydroxytryptamine antagonists. Pharmacol Rev 13:399–439

    PubMed  CAS  Google Scholar 

  • Haeusler G (1974) Further similarities between the action of clonidine and a central activation of the depressor baroreceptor reflex. Naunyn Schmiedebergs Arch Pharmacol 285:1–14

    PubMed  CAS  Google Scholar 

  • Haeusler G (1982) Central a-adrenoceptors involved in cardiovascular regulation. J Cardio vase Pharmacol 4:S72-S76

    Google Scholar 

  • Haeusler G, Finch L (1972) On the nature of the central hypotensive effect of clonidine and α-methyldopa. J Pharmacol (Paris) 3:544–545

    Google Scholar 

  • Heise A (1976) Hypotensive action by central α-adrenergic and dopaminergic receptor stimulation. In: Scriabine A, Sweet CS (eds) New antihypertensive drugs. Chronographs of the Physiological Society of Philadelphia, vol 2. Spectrum, New York, pp 135–145

    Google Scholar 

  • Heise A, Kroneberg G (1973) Central nervous α-adrenergic receptors and the mode of action of α-methyldopa. Naunyn Schmiedebergs Arch Pharmacol 279:285–300

    PubMed  CAS  Google Scholar 

  • Heller H (1933) Über die zentrale Blut druck Wirkung des Adrenalins. Naunyn Schmiedebergs Arch Exp Pathol 173:291–300

    CAS  Google Scholar 

  • Henning M, Rubenson A (1970) Central hypotensive effect of L-3,4-dihydroxyphenyl-alanine in the rat. J Pharm Pharmac 22:553–560

    CAS  Google Scholar 

  • Henning M, van Zwieten PA (1967) Central hypotensive effect of α-methyldopa. J Pharm Pharmac 19:403–405

    CAS  Google Scholar 

  • Henning M, Rubenson A, Trolin G (1972) On the localization of the hypotensive effect of L-dopa. J Pharm Pharmac 24:447–451

    CAS  Google Scholar 

  • Higgins CB, Millard RW, Braunwald E, Vatner SF (1973) Effects and mechanisms of action of dopamine on regional hemodynamics in the conscious dog. Am J Physiol 255:423–437

    Google Scholar 

  • Ho IK, Habeshima T, Sivam SP, Flint BA, Hoskins B (1981) Effects of pentobarbital on GABA system. Proc Int Workshop Neuropharmacology, Teipei 1981. In: Lee CY (ed) Advances in Neuropharmacology. Academia Simica, Teipei, pp 133–140

    Google Scholar 

  • Hoefke W (1976) Centrally acting antihypotensive agents. In: Engelhardt EL (ed) ACS Symposium Series 27, Antihypotensive agents. Am Chemical Society, Washington, pp 27–54

    Google Scholar 

  • Hoefke W, Jennewein HM (1981) Mechanisms of antihypertensive action of clonidine in relation to its psychotropic effects. Psychopharmacology of clonidine. Liss, New York, pp 75–97

    Google Scholar 

  • Hoefke W, Kobinger W (1966) Pharmakologische Wirkungen des 2-(2,6-Dichlorphenyl-amino)-2-imidazolinhydrochlorids, einer neuen, antihypertensiven Substanz. Arzneim Forsch 16:1038–1050

    CAS  Google Scholar 

  • Hoefke W, Kobinger W (1967) Pharmakologische Wirkungen eines neuen Antihypertensivums mit Imidazolin-Struktur. Naunyn Schmiedebergs Arch Pharmacol 257: 28–29

    CAS  Google Scholar 

  • Hoefke W, Gaida W, Rominger KL (1979) Blood pressure, heart rate and urinary catecholamines after stopping treatment with antihypertensive agents in rats. In: Sixth Scientific Meeting of the International Society of Hypertension, Göteborg, Sweden. Abstracts 252

    Google Scholar 

  • Hökfelt B, Hedeland H, Dymling J-F (1970) Studies on catecholamines, renin and aldosterone following Catapresan (2-(2,6-dichlorphenylamine)-2-imidazoline hydrochloride) in hypertensive patients. Eur J Pharmacol 10:389–397

    PubMed  Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M, Johannsson O (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66:235–251

    Google Scholar 

  • Hökfelt T, Johansson O, Fuxe K, Goldstein M, Park D (1976) Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes- and diencephalon. Med Biol 54: 427–453

    PubMed  Google Scholar 

  • Holtz P (1950) Über die sympathomimetische Wirksamkeit von Gehirnextrakten. Acta Physiol Scand 20:354–362

    PubMed  CAS  Google Scholar 

  • Holtz P, Credner K, Kronberg G (1944/47) Über das sympathicomimetische pressorische Prinzip des Harns („Urosympathin”). Naunyn Schmiedebergs Arch Exp Pathol 804:228–243

    Google Scholar 

  • Hong E, Nava-Felix P, Vidrio H (1978) On the central antihypertensive effects of a new tryptamine derivative. Pharmacologist 20(3): 188

    Google Scholar 

  • Hong E, Rion R, Nava-Felix P (1979) Presynaptic receptor stimulation induced by the central antihypertensive 5-methoxytryptamine, β-methylcarboxylate (TR 3369). Pharmacologist 21:254

    Google Scholar 

  • Horwitz D, Sjoerdsma A (1964) Effects of alpha-methyl-meta-tyrosine intravenously in man. Life Sci 3:41–48

    PubMed  CAS  Google Scholar 

  • Howe PRC, Stead BH, Chalmers JP (1982) Central serotonin nerves in spontaneously hypertensive and Doca-salt hypertensive rats. Hypertensive mechanisms. In: Rascher W, Clough D, Ganten D (eds) The spontaneously hypertensive rat as a model to study human hypertension. Schattauer, Stuttgart, pp 627–631

    Google Scholar 

  • Hukuhara T Jr, Otsuka Y, Takeda R, Sakai F (1968) Die zentralen Wirkungen des 2-(2,6-Dichlorphenylamino)-2-imidazn-hydrochlorids. Arzneim Forsch 18:1147–1153

    CAS  Google Scholar 

  • Ingenito AJ, Barrett JP, Procita L (1970) A centrally mediated peripheral hypotensive effect of a-methyldopa. J Pharmacol Exp Ther 175:593

    PubMed  CAS  Google Scholar 

  • Ito A, Schanberg SM (1972) Central nervous system mechanisms responsible for blood pressure elevation induced by p-chlorophenylalanine. J Pharmacol Exp Ther 181: 65–74

    PubMed  CAS  Google Scholar 

  • Iversen LL (1978) Biochemical psychopharmacology of GABA. In: Lipton MA, Di-Mascio A, Killam KF (eds) Psychopharmacology: A generation of progress. Raven Press, New York, pp 25–38

    Google Scholar 

  • Johnston GAR, Willow M (1982) GABA and barbiturate receptors. TIPS Aug:328–330

    Google Scholar 

  • Kebanian JW, Calm DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Google Scholar 

  • Kobinger W (1967) Über den Wirkungsmechanismus einer neuen antihypertensiven Substanz mit Imidazolinstruktur. Naunyn Schmiedebergs Arch Pharmacol 258: 48–58

    CAS  Google Scholar 

  • Kobinger W, Hoefke W (1968) Pharmakologische Untersuchungen über den Angriffspunkt und Wirkungsmechanismus eines neuen Hochdruckmittels. In: Heilmeyer F, Holtmeier H-J, Pfeiffer EF (eds) Hochdrucktherapie. Thieme, Stuttgart, pp 4–17

    Google Scholar 

  • Kobinger W, Pichler L (1975a) The central modulatory effect of Clonidine on the cardiopressor reflex after suppression of synthesis and storage of noradrenaline. Eur J Pharmacol 3 0:56–62

    Google Scholar 

  • Kobinger W, Pichler L (1975b) Localization in the CNS of adrenoceptors which facilitate a cardioinhibitory reflex. Naunyn Schmiedebergs Arch Pharmacol 286: 371–377

    PubMed  CAS  Google Scholar 

  • Kobinger W, Walland A (1967a) Kreislaufuntersuchungen mit 2-(2,6-Dichlorphenyl-amino)-2-imidazolin-hydrochlorid. Arzneim Forsch 17:292–300

    CAS  Google Scholar 

  • Kobinger W, Walland A (1967b) Investigations into the mechanism of the hypotensive effect of 2-(2,6-dichlorphenylamino)-2-imidazoline-HCl. Eur J Pharmacol 2:155–162

    PubMed  CAS  Google Scholar 

  • Kobinger W, Walland A (1971) Involvement of adrenergic receptors in central vagus activity. Eur J Pharmacol 16:120–122

    CAS  Google Scholar 

  • Kobinger W, Walland A (1972) Evidence for a central activation of a vagal cardio-depressor reflex by clonidine. Eur J Pharmacol 19:203–209

    PubMed  CAS  Google Scholar 

  • Korner PI, Angus JA (1981) Central nervous control of blood pressure in relation to antihypertensive drug treatment. Pharmac Ther 13:231–356

    Google Scholar 

  • Krstic MK, Djurkovic D (1980) Analysis of cardiovascular responses to central administration of 5-hydroxytryptamine in rats. Neuropharmacology 19:455–463

    PubMed  CAS  Google Scholar 

  • Kuhn DM, William A, Wolf BA, Lovenberg W (1980) Review of the role of the central serotonergic neuronal system in blood pressure regulation. Hypertension 2:243–255

    PubMed  CAS  Google Scholar 

  • Lambert G, Friedman E, Gershon S (1975) Centrally mediated cardiovascular response to 5-HT. Life Sci 17:915–920

    PubMed  CAS  Google Scholar 

  • Lambert GA, Friedman E, Buchweitz E, Gershon S (1978) Involvement of 5-hydroxytryptamine in the central control of respiration, blood pressure and heart rate in the anaesthetized rat. Neuropharmacology 17:807–813

    PubMed  CAS  Google Scholar 

  • Lang WJ, Woodman OL (1979) Cardiovascular responses produced by the injection of dopamine into the cerebral ventricles ofthe unanaesthetized dog. Br J Pharmacol 66:235–240

    PubMed  CAS  Google Scholar 

  • Laubie M, Schmitt H (1977) Sites of action of clonidine: centrally mediated increase in vagal tone, centrally mediated hypotensive and sympatho-inhibitory effects. In: de Jongh W, Provoost AP, Shapiro AP (eds) Hypertension and brain mechanisms. Elsevier, Amsterdam, pp 337–348

    Google Scholar 

  • Laubie M, Delbarre B, Bogaievsky D, Bogaievsky Y, Tsoucaris-Kupfer D, Senon D, Schmitt H (1976a) Pharmacological evidence for a central alpha-sympathomimetic mechanism controlling blood pressure and heart rate. Circ Res [Suppl III] 38: 35–41

    PubMed  CAS  Google Scholar 

  • Laubie M, Schmitt H, Drouillat M (1976b) Action of clonidine on the baroreceptor pathway and medullary sites mediating vagal bradycardia. Eur J Pharmacol 38: 293–303

    PubMed  CAS  Google Scholar 

  • Leysen JE, Awouters F, Kennis L, Ladaron J, Vandenberg J, Janssen PAJ (1981) Receptor binding profile of R 41 468, a novel antagonist at 5-HT2 receptors. Life Sci 28:1015–1022

    PubMed  CAS  Google Scholar 

  • Lipski J, Przybylski J, Solnicka E (1975) Reduced hypotensive effect of clonidine after lesions of the nucleus tractus solitarii in rats. Eur J Pharmacol 38:19–22

    Google Scholar 

  • Lokhandwala MF (1979) Analysis of the effect of bromocriptine on blood pressure and sympathetic nerve function. Eur J Pharmacol 56:253–256

    PubMed  CAS  Google Scholar 

  • Lovenberg W, Wolf W, Kuhn D (1982) The central serotonergic neuronal system and blood pressure regulation in the spontaneous hypertensive rats. Hypertensive mechanisms. In: Rascher W, Clough D, Ganten D (eds) The spontaneous hypertensive rat as a model to study human hypertension. Schattauer, Stuttgart, pp 632–637

    Google Scholar 

  • Martinez AA, Lokhandwala MF (1980) Evidence for a presynaptic inhibitory action of 5-hydroxytryptamine on sympathetic neurotransmission to the myocardium. Eur J Pharmacol 63:303–311

    PubMed  CAS  Google Scholar 

  • McCall RB, Humphrey SJ (1982) Involvement of serotonin in the central regulation of blood pressure: evidence for a facilitating effect on sympathetic nerve activity. J Pharmacol Exp Ther 222:94–102

    PubMed  CAS  Google Scholar 

  • McCubbin IW, Kameko Y, Page IH (1960) Ability of serotonin and norepinephrine to mimic the central effects of reserpine on vasomotor activity. Circ Res 8:849–858

    PubMed  CAS  Google Scholar 

  • McGeer EG, McGeer PL (1979) GABA-containing neurons in schizophrenia. Huntington’s chorea and normal agint. In: Krogsgaard-Larsen P, Scheel-Kriiger J, Kofod H (eds) GABA-neurotransmitters. Munksgaard, Copenhagen, pp 340–356

    Google Scholar 

  • McMurtry JP, Kazama N, Wexler BC (1979) Effects of bromocriptine on hormone and blood pressure levels in the spontaneous hypertensive rat. Proc Soc Exp Biol Med 161:186–188

    PubMed  CAS  Google Scholar 

  • Meldrum BS (1975) Epilepsy and GABA-mediated inhibition. Int Rev Neurobiol 17: 1–36

    PubMed  CAS  Google Scholar 

  • Müller GF, Eugster CH (1965) Muscimol, ein pharmakodynamisch wirksamer Stoff aus Amanita muscaria. Helv Chim Acta 48:910–926

    Google Scholar 

  • Nagaoka A, Lovenberg W (1977) Regional changes in the activities of aminergic biosynthetic enzymes in the brain of hypertensive rats. Eur J Pharmacol 43:297–306

    PubMed  CAS  Google Scholar 

  • Nava-Felix P, Hong E (1979) Nature of the central serotonin receptors mediating hypotension. J Cardiovasc Pharmacol 1:461–466

    PubMed  CAS  Google Scholar 

  • Nayler WG, Price JM, Swann JB, McInnes I, Race D, Lowe TE (1968) Effect of the hypotensive drug St 155 (Catapres) on the heart and peripheral circulation. J Pharmacol Exp Ther 164:45–59

    PubMed  CAS  Google Scholar 

  • Nijkamp FP, de Jong W (1975) Alpha-methylnoradrenaline induced hypotension and bradycardia after administration into the area of the nucleus tractus solitarii. Eur J Pharmacol 32:361–363

    PubMed  CAS  Google Scholar 

  • Nolan PC (1977) The effect of serotonin precursors on the pressor response to intravenous clonidine in conscious rats. Clin Exp Pharmacol Physiol 4:579–583

    PubMed  CAS  Google Scholar 

  • Oates JA, Gillespie L, Udenfriend S, Sjoerdsma A (1960) Decarboxylase inhibition and blood pressure reduction by a-methyl-3,4-dihydroxy-DL-phenylalanine. Science 131:1890–1891

    PubMed  CAS  Google Scholar 

  • Olpe H-R, Demiéville H, Baltzer V, Bencze WL, Koella WP, Wolf P, Haas HL (1978) The biological activity of d- and l-baclofen (Lioresal). Eur J Pharmacol 52:133–136

    PubMed  CAS  Google Scholar 

  • Osborne MW (1976) On the genesis of essential hypotension – the possible role of central nervous system dopaminergic neurons. In: Scriabine A, Sweet C (eds) New antihypertensive drugs. Chronographs of the Physiological Sociey of Philadelphia, vol 2. Spectrum, New York, pp 105–134

    Google Scholar 

  • Palkovits M, Brownstein M, Saavedra JM (1974) Serotonin content of the brainstem nuclei in the rat. Brain Res 80:237–249

    PubMed  CAS  Google Scholar 

  • Palm D, Langeneckert W, Holtz P (1967) Bedeutung der N- und α-Methylierung für die Affinität von Brenzcatechinaminen zu den adrenergischen Receptoren. Naunyn Schmiedebergs Arch Pharmacol Exp Pathol 258:128–149

    CAS  Google Scholar 

  • Persson B (1980a) Cardiovascular effects of intracerebroventricular GABA, glycine and muscimol in the rat. Naunyn Schmiedebergs Arch Pharmacol 313:225–236

    PubMed  CAS  Google Scholar 

  • Persson B (1980b) GABA-ergic mechanisms in blood pressure control A pharmacologic analysis in the rat. Acta Physiol Scand [Suppl] 491:1–54

    CAS  Google Scholar 

  • Philippu A, Demmeler R, Roensberg G (1974) Effects of centrally applied drugs on pressor responses to hypothalamic stimulation. Naunyn Schmiedebergs Arch Pharmacol 282:389–400

    PubMed  CAS  Google Scholar 

  • Pinder RM, Brogden RN, Sawyer PR, Speight TM, Avery GS (1975) Fenfluramine: A review of its pharmacological properties and therapeutic efficacy in obesity. Drugs 10:241–323

    PubMed  CAS  Google Scholar 

  • Rapport MM (1949) Serum vasoconstrictor (serotonin). V. The presence of Creatinin in the complex: A proposed study of the vasocontrictor principle. J Biol Chem 180:961–969

    PubMed  CAS  Google Scholar 

  • Roberts E, Frankel S (1950) γ-aminobutyric acid in brain. Fed Proc 9:219

    Google Scholar 

  • Roberts E, Krause DM (1982) γ-aminobutyric acid system in cardiovascular and cerebrovascular function. Israel J Med Sci 18:75–81

    PubMed  CAS  Google Scholar 

  • Robson RD, Kaplan HR (1969) An involvement of St 155 [2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride, Catapres] in cholinergic mechanisms. Eur J Pharmacol 5:328–337

    PubMed  CAS  Google Scholar 

  • Robson RD, Kaplan HR, Laforce S (1969) An investigation into the bradycardic effects of St 155 [2-(2,6-dichlorophenylamino)-2-imidazoline HCl] in the anesthetized dog. J Pharmacol Exp Ther 169:120–131

    PubMed  CAS  Google Scholar 

  • Saavedra JM, Palkovits M, Browstein MJ, Axelrod J (1974) Localization of phenyl-ethanolamine n-methyl transferase in the rat brain nuclei. Nature 248:695–696

    PubMed  CAS  Google Scholar 

  • Sattler RW, van Zwieten PA (1967) Acute hypotensive action of 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride (St 155) after infusion into the cat’s vertebral artery. Eur J Pharmacol 2:9–13

    PubMed  CAS  Google Scholar 

  • Scatton B, Pelayo F, Dubocovich ML, Langer SZ, Bartholini(1979) Effect of clonidine on utilization and potassium-evoked release of adrenaline in rat brain areas. Brain Res 176:197–201

    Google Scholar 

  • Schieken RM (1979) The effect of diazepam upon the development of hypertension in the spontaneously hypertensive rat. Pediat Res 13:992–996

    PubMed  CAS  Google Scholar 

  • Schmitt H, Schmitt H (1969) Localization of the hypotensive effect of 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride (St 155, Catapresan). Eur J Pharmacol 6:8–12

    PubMed  CAS  Google Scholar 

  • Schmitt H, Schmitt H (1970) Interactions between 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride (St 155, Catapresan) and a-adrenergic blocking drugs. Eur J Pharmacol 9:7–13

    PubMed  CAS  Google Scholar 

  • Schmitt H, Schmitt H, Boissier JR, Giudicelli JF (1967) Centrally mediated decrease in sympathetic tone induced by 2-(2,6-dichlorophenylamino)-2-imidazoline (St 155, Catapresan). Eur J Pharmacol 2:147–148

    PubMed  CAS  Google Scholar 

  • Schmitt H, Schmitt H, Boissier JR, Giudicelli JF, Fichelle J (1968) Cardiovascular effects of 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride (St 155). II. Central sympathetic structures. Eur J Pharmacol 2:340–346

    PubMed  CAS  Google Scholar 

  • Schmitt H, Fénard S, Schmitt H (1971a) Influence d’agents bloquants sur les effects inhibiteurs exercés par la clonidine sur les centres vasomoteurs. J Pharmacol (Paris) 2:369–273

    Google Scholar 

  • Schmitt H, Schmitt H, Fénard S (1971b) Evidence for an a-sympathomimetic component in the effects of Catapresan on vasomotor centers. Antagonism by piperoxane. Eur J Pharmacol 14:98–100

    PubMed  CAS  Google Scholar 

  • Schneider E, Felix W (1983) The influence of ketanserin on central cardiovascular regulation. Naunyn Schmiedebergs Arch Pharmacol 322:R42

    Google Scholar 

  • Shaw J, Hunyor SN, Korner PI (1971) Sites of central nervous action of clonidine on reflex autonomic function in the unanaesthetized rabbit. Eur J Pharmacol 15:66–78

    PubMed  CAS  Google Scholar 

  • Sherman GP, Grega G J, Woods RJ, Buckley JP (1968) Evidence for a central hypotensive mechanism of 2-(2,6-dichlorphenylamino)-2-imidazoline (Catapresan, St 155). Eur J Pharmacol 2:326–328

    PubMed  CAS  Google Scholar 

  • Sinha JN, Atkinson JM, Schmitt H (1973) Effects of clonidine and L-DOPA on spontaneous and evoked splanchnic nerve discharges. Eur J Pharmacol 24:113–119

    PubMed  CAS  Google Scholar 

  • Sinha JN, Tangsi KK, Bhargava KP, Schmitt H (1975) Central sites of sympathoinhibitory effects of clonidine and L-DOPA. In: Milliez P, Safar M (eds) Recent advances in hypertension, vol 1. Société Aliéna, Reims, pp 97–109

    Google Scholar 

  • Sjoerdsma A (1967) Catecholamines and the drug therapy. Circ Res 21 [Suppl III] 21:119–125

    CAS  Google Scholar 

  • Smits JF, Struyker-Boudier HA (1976) Intrahypothalamic serotonin and cardiovascular control in rats. Brain Res 111:422–427

    PubMed  CAS  Google Scholar 

  • Snead OC (1977) Gamma-hydroxybutyrate. Life Sci 20:1935–1944

    PubMed  CAS  Google Scholar 

  • Snyder SH (1976) Catecholamines, serotonin, and histamin. In: Siegel GJ, Albers RW, Katzman R, Agranoff BW (eds) Basic neurochemistry, pp 203–217

    Google Scholar 

  • Soubrie P, Montastruc JC, Bourgoin S, Reisine T, Artaud F, Glowinski J (1981) In vivo evidence for GABAergic control of serotonin release in the cat substantia nigra. Eur J Pharmacol 69:483–488

    PubMed  CAS  Google Scholar 

  • Sowers JR, Gollub MS, Berger ME, Whitfield LA (1982) Dopaminergic modulation of pressor and hormonal responses in essential hypertension. Hypertension 4:424–430

    PubMed  CAS  Google Scholar 

  • Starke K, Montel H (1973) Involvement of α-receptors in clonidine-induced inhibition of transmitter release from central monoamine neurones. Neuropharmacology 12: 1073–1080

    PubMed  CAS  Google Scholar 

  • Starke K, Tanak, Stamm G (1980) Evidence against agonist- and antagonist-selective α-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmacol 311:R58

    Google Scholar 

  • Struyker-Boudier HAJ, van Essen H (1982) Hemodynamic actions of ketanserin and the alpha-adrenoceptor blockers prazosin and phentolamine in the conscious SHR. Naunyn Schmiedebergs Arch Pharmacol 322:R42

    Google Scholar 

  • Struyker-Boudier H, Smeets G, Brouwer G, Rossum J van (1975) Localization of central noradrenergic mechanisms in cardiovascular regulation in rats. Clin Sci 48: 277s-278s

    Google Scholar 

  • Stumpe KO, Higuchi M, Kolloch R, Krück F, Vetter H (1977) Hyperprolactinaemia and antihypertensive effect of bromocriptine in essential hypertension. The Lancet 30:211–214

    Google Scholar 

  • Svensson TH, Bunney BS, Aghajanian GK (1975) Inhibition of both noradrenergic and serotonergic neurons in brain by the a-adrenergic agonist clonidine. Brain Res 92:291–306

    PubMed  CAS  Google Scholar 

  • Tadepalli AS, Mills E, Schanberg SM (1977) Central depression of carotid baroreceptor pressor response, arterial pressure and heart rate by 5-hydroxytryptophan: Influence of supracollicular areas of the brain. J Pharmacol Exp Ther 202:310–319

    PubMed  CAS  Google Scholar 

  • Takahashi H, Tiba M, Ino M, Takayasu T (1955) The effect of α-aminobutyric acid on blood pressure. Jpn J Physiol 5:334–339

    PubMed  CAS  Google Scholar 

  • Takahashi H, Tiba M, Yamazaki T, Noguchi F (1958) On the site of action of γ-aminobutyric acid on blood pressure. Jpn J Physiol 8:378–390

    PubMed  CAS  Google Scholar 

  • Tappaz M, Brownstein MJ, Kopin IJ (1977) Glutamate decarboxylase (GAD) and gamma-aminobutyric acid (GABA) in discrete nuclei of hypothalamus and substantia nigra. Brain Res 125:109–121

    PubMed  CAS  Google Scholar 

  • Toda N, Fukuda N, Shimamoto K (1969) The mode of hypotensive actions of 2-(2,6-dichlorophenyl-l-amino)-imidazoline in the rabbit. Jpn J Pharmacol 19:199–210

    PubMed  CAS  Google Scholar 

  • Trolin G (1975) Effects of pentobarbitone and decerebration on the clonidine-induced circulatory changes. Eur J Pharmacol 34:1–7

    PubMed  CAS  Google Scholar 

  • Tuomilehto J, Siltanen H, Jespersen S (1977) A study on the effect of fenfluramine in obese, hypertensive patients treated with β-adrenergic blocking agents. Curr Ther Res 22:821–827

    Google Scholar 

  • Twarog BM, Page IH (1953) Serotonin content of some mammalian tissue and urine and a method for its determination. Am J Physiol 175:157–161

    PubMed  CAS  Google Scholar 

  • Unger Th, Bles F, Ganten D, Lang RE, Rettig R, Schwab NA (1983) GABA-ergic stimulation inhibits central actions of angiotensin II: Pressor responses, drinking, and release of vasopressin. Eur J Pharmacol 90:1–9

    PubMed  CAS  Google Scholar 

  • U’Prichard DC, Snyder SH (1978) 3 H-catecholamine binding to α-receptor in rat brain: enhancement by reserpine. Eur J Pharmacol 51:145–155

    PubMed  Google Scholar 

  • van Nueten JM, Janssen PAJ, van Beek J, Xhonneux R, Verbeuren TJ, Vanhoutte PM (1981) Vascular effects of ketanserin (R41 468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther 218:217–230

    PubMed  Google Scholar 

  • van Zwieten PA (1980) Characterization of the central α-adrenoceptors involved in the hypotensive action of clonidine by yohimbine, corynanthine and rauwolscine. Naunyn Schmiedebergs Arch Pharmacol 311:R58

    Google Scholar 

  • Vickers MD (1969) Gamma-hydroxybutyric acid. Int Anaesthesiol Clin 7:75–89

    CAS  Google Scholar 

  • von Euler V (1946) A specific sympathomimetic ergone in adrenergic nerve fibres (sympathica) and its relation to adrenaline and noradrenaline. Acta Physiol Scand 12:73–97

    Google Scholar 

  • Warnke E, Hoefke W (1977) Influence of central pretreatment with 6-hydroxydopamine on the hypotensive effect of clonidine. Arzneim Forsch 27:2311–2313

    CAS  Google Scholar 

  • Waszczak BL, Hruska RE, Walters JR (1980) GABA-ergic actions of THIP in vivo and in vitro: a comparison with muscimol and GABA. Eur J Pharmacol 65:21–29

    PubMed  CAS  Google Scholar 

  • Williford DJ, Hamilton BL, Souza JD, Williams TP, DiMicco J A, Güls RA (1980) Central nervous system mechanisms involving GABA influence arterial pressure and heart rate in the cat. Circ Res 47(l):80–88

    PubMed  CAS  Google Scholar 

  • Wing LMH, Chalmers JP (1974) Effects of p-chlorophenylalanine on blood pressure and heart rate in normal rabbits with neurogenic hypertension. Clin Exp Pharmacol Physiol 1:219–229

    PubMed  CAS  Google Scholar 

  • Yen TJ, Stamm NB, Clemens JA (1979) Pergolide: a potent dopaminergic antihypertensive. Life Sci 25:209–216

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York

About this paper

Cite this paper

Hoefke, W., Gaida, W. (1983). Centrally Acting Drugs as a Tool to Study Central Mechanisms of Blood Pressure Control. In: Ganten, D., Pfaff, D. (eds) Central Cardiovascular Control. Current Topics in Neuroendocrinology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68490-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68490-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68492-0

  • Online ISBN: 978-3-642-68490-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics