Neuropeptides and Central Blood Pressure Regulation

  • R. E. Lang
  • W. Gaida
  • D. Ganten
  • K. Hermann
  • K. Kraft
  • Th. Unger
Part of the Current Topics in Neuroendocrinology book series (CT NEUROENDOCRI, volume 3)


It has been established for several years that, in addition to the classic neurotransmitters, peptides are used as chemical messengers between neuronal elements. Angiotensin and bradykinin were among the first peptides to be implicated in the central mechanisms of blood pressure control (Bickerton and Buckley 1961; Lambert and Lang 1970; Severs and Daniels-Severs 1973). The list of neuropeptides has grown rapidly over the last few years, and it has been demonstrated that a number of them, such as vasopressin, neurotensin, thyrotropin-releasing hormone, somatostatin, substance P, enkephalins, and endorphin, as well as the recently isolated corticotropin-releasing factor, interfere with the central regulation of blood pressure and heart rate (Unger et al. 1981a; Fisher et al. 1982). The intention of this article is briefly to survey the current state of knowledge about the role of the peptides ANG II, substance P, and opioid peptides in cardiovascular control. Results from our own laboratory as well as data reported by other authors are summarized, but no attempt is made to give an exhaustive review of the literature.


Opioid Peptide Nucleus Tractus Solitarii Blood Pressure Regulation Opiate Receptor Endogenous Opioid Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnati LF, Fuxe K, Bolme P, Lundberg J, Hökfelt T (1979) Evidence for a possible role of substance P and/or its fragments in the central cardiovascular regulation. Neurosci Lett [Suppl] 3:S330Google Scholar
  2. Arndt JO, Freye E (1979) Perfusion of naloxone through the fourth cerebral ventricle reverses the circulatory and hypnotic effects of halothane in dogs. Anesthesiology 51:58–63PubMedCrossRefGoogle Scholar
  3. Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res 124:53–67PubMedCrossRefGoogle Scholar
  4. Bellet M, Elghozi JL, Meyer P, Pernollet MG, Schmitt H (1980) Central cardiovascular effect of narcotic analgesics and enkephalins in rats. Br J Pharmacol 71:365–369PubMedGoogle Scholar
  5. Bellet M, Elghozi JL, Meyer P (1981) Central hypotensive effect of diprenorphine in normotensive rat and SHR. Arch Int Pharmacodyn Ther 252:147–151PubMedGoogle Scholar
  6. Bickerton RK, Buckley JP (1961) Evidence for a central mechanism in angiotensin induced hypertension. Proc Soc Exp Biol Med 106:834–836Google Scholar
  7. Bolme P, Fuxe K, Agnati LF, Bradley R, Smythies J (1978) Cardiovascular effects of morphine and opioid peptides following intracisternal administraiton in chloralose anesthetized rats. Eur J Pharmacol 48:319–324PubMedCrossRefGoogle Scholar
  8. Buckley JP, Jandhyala BS (1977) Central cardiovascular effects of angiotensin. Life Sci 20:1485–1493PubMedCrossRefGoogle Scholar
  9. Changaris DG, Severs WB, Keil LC (1978) Localization of angiotensin in rat brain. J Histochem Cytochem 26:593–607PubMedCrossRefGoogle Scholar
  10. Childers SR, Creese I, Snowman AM, Snyder SH (1979) Opiate receptor binding affected differentially by opiates and opioid peptides. Eur J Pharmacol 55: 11–18PubMedCrossRefGoogle Scholar
  11. Conrad LCA, Pfaff DW (1976) Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 169:221–262PubMedCrossRefGoogle Scholar
  12. Deuben RR, Buckley JP(1970) Identification of a central site of action of angiotensin. J Pharmacol Exp Ther 175:139–146PubMedGoogle Scholar
  13. Eide R, Hökfelt T, Johansson O, Terenius L (1976) Immunohistochemical studies using antibodies to leucine-enkephalin: initial observations on the nervous system of the rat. Neuro science 1:3 49–351Google Scholar
  14. Elghozi JL, Bellet M, Meyer P (1981) Central pressor action of enkephalins in rats. In: Buckley JP, Ferrario CM (eds) Central nervous system: Mechanisms in hypertension. Raven Press, New York, pp 249–254Google Scholar
  15. Epstein AN (1978) The neuro endocrinology of thirst and salt appetite. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology. Raven Press, New York, pp 101–134Google Scholar
  16. Evans AG J, Nasmyth PA, Steward HC (1952) The fall of blood pressure caused by intravenous morphine in the rat and cat. Br J Pharmacol 7:542–552Google Scholar
  17. Faden AI, Holaday JW (1979) Opiate antagonists: a role in the treatment of hypovolemic shock. Science 205:317–318PubMedCrossRefGoogle Scholar
  18. Faden AI, Jacobs TP, Holaday JW (1980) Endorphin-parasympathetic interaction in spinal shock. J Autonom Nervous System 2:295–304CrossRefGoogle Scholar
  19. Farsang C, Ramirez-Gonzalez MD, Mucci L, Kunos G (1980) Possible role of an endogenous opiate in the cardiovascular effects of central alpha-adrenoreceptor stimulation in spontaneously hypertensive rats. J Pharmacol Exp Ther 214:203–208PubMedGoogle Scholar
  20. Feldberg W, Wei E (1978) Central cardiovascular effects of enkephalins and C-fragment of lipotropin. J Physiol 280:18PGoogle Scholar
  21. Fennessy MR, Rattray JF (1971) Cardiovascular effects of intravenous morphine in the anesthetized cat. Eur J Pharmacol 14:1–8PubMedCrossRefGoogle Scholar
  22. Feuerstein G, Faden AI (1982) Differential cardiovascular effects of ju,5, and K opiate agonists at discrete hypothalamic sites in the anesthetized rat. Life Sci 31:2197–2200PubMedCrossRefGoogle Scholar
  23. Finley JCW, Lindström P, Petrusz P (1981) Immunocytochemical localization of ß-endorphin-containing neurons in the rat brain. Neuroendocrinology 33:28–42PubMedCrossRefGoogle Scholar
  24. Fisher LA, Rivier J, Rivier C, Spiess J, Vale W, Brown MR (1982) Corticotropin releasing factor (CRF): central effects on mean arterial pressure and heart rate in rats. Endocrinology 110:2222–2224PubMedCrossRefGoogle Scholar
  25. Fitzsimons JT (1980) Angiotensin stimulation of the central nervous system. Rev Physiol Biochem Pharmacol 87:117–167PubMedCrossRefGoogle Scholar
  26. Fuxe K, Ganten D, Hökfelt T, Bolme P (1976) Immunohistochemical evidence for the existence of angiotensin II-containing nerve terminals in the brain and spinal cord in the rat. Neurosci Lett 2:229–234PubMedCrossRefGoogle Scholar
  27. Fuxe K, Aganti LF, Rosell S, Halstrand A, Lundberg J, Hokfelt T, Bernardi P (1981) Vasopressor effects of substance P and its C-terminal fragments following intracisternal injection to a-chloralose anaesthetized rats: blockade by a substance P antagonist. Eur J Pharmacol 15:171–176Google Scholar
  28. Ganten D (1978) Is there a brain isorenin-angiotensin-system? Circ Res 42:732–733PubMedGoogle Scholar
  29. Ganten D, Speck G (1978) The brain renin-angiotensin system: a model for the synthesis of peptides in the brain. Biochem Pharmacol 27:2379–2389PubMedCrossRefGoogle Scholar
  30. Ganten D, Stock G (1978) Humoral and neurohormonal aspects of blood pressure regulation: focus on angiotensin. Klin Wochenschr 56(1):31–41PubMedCrossRefGoogle Scholar
  31. Ganten D, Hutchinson JS, Schelling P (1975) The intrinsic brain iso-renin-angiotensin system: biochemistry, localization, and possible role in drinking and blood pressure regulation. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology V. Raven Press, New York, pp 61–101Google Scholar
  32. Ganten D, Rockhold RW, Unger Th, Speck G (1980) “The central peptidergic stimulation syndrome”: Possible importance for arterial blood pressure regulation. In: Gross F, Liedtke RK (eds) Pharmacology and clinical use of angiotensin I convert & ing enzyme inhibitors. Fischer, Stuttgart New York, pp 17–22Google Scholar
  33. Ganten D, Printz M, Phillips MI, Scholkens BA (1982) The renin angiotensin system in the brain. Exp Brain Res [Suppl 4]. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. Gildenberg PL, Ferrario CM, McCubbin JW (1973) Two sites of cardiovascular action of angiotensin II in the brain of the dog. Clin Sci 44:417–420PubMedGoogle Scholar
  35. Haber S, Elde R (1982) The distribution of enkephalin immunoreactive fibers and terminals in the monkey central nervous system: an immunohistochemical study. Neuroscience 7:1049–1095PubMedCrossRefGoogle Scholar
  36. Haeusler G, Osterwalder R (1980) Evidence suggesting a transmitter or neuromodula-try role for substance P at the first synapse of the baroreceptor reflex. Naunyn Schmiedebergs Arch Pharmacol 314:111–121PubMedCrossRefGoogle Scholar
  37. Hassen AH, Feuerstein GZ, Faden Al (1982) Cardiovascular responses to opioid agonists injected into the nucleus of tractus solitarius of anesthetized cats. Life Sci 3:2193–2196CrossRefGoogle Scholar
  38. Hay ward JR, Fink GD, Buggy J, Phillips MI, Brody MJ (1980) The area postrema plays no role in the pressor action of angiotensin in the rat. Am J Physiol 239: HI 08–HI 13Google Scholar
  39. Hill L (1895) The influence of the force of gravity on the circulation of the blood. J Physiol 18:15–23PubMedGoogle Scholar
  40. Hirose S, Yokosawa H, Inagami T (1978) Immunochemical identification of renin in rat brain and distinction from acid proteases. Nature 274:392–393PubMedCrossRefGoogle Scholar
  41. Hoffman WE, Phillips MI (1976) Regional study of cerebral ventricle sensitive sites to angiotensin II. Brain Res 110:313–330PubMedCrossRefGoogle Scholar
  42. Hokfelt T, Elde R, Johansson O, Terenius L, Stein L (1977) The distribution of enke-phalin-immunoreactive cell bodies in the rat central nervous system. Neurosci Lett 5:25–31PubMedCrossRefGoogle Scholar
  43. Hokfelt T, Elde R, Johansson O, Ljungdahl A, Schultzberg M, Fuxe K, Goldstein M, Nilsson G, Pernow P, Terenius L, Ganten D, Jeffcoate SL, Rehfeld J, Said S (1978) Distribution of peptide containing neurons. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology, a generation of progress. Raven Press, New York, pp 39–66Google Scholar
  44. Holaday JW, Faden Al (1978) Naloxone reversal of endotoxin hypotension suggests a role of endorphins in shock. Nature 275:450–451PubMedCrossRefGoogle Scholar
  45. Janssen HF, Lutherer LO (1980) Ventricuolocisternal administration of naxolone protects against severe hypotension during endotoxin shock. Brain Res 194:608–612PubMedCrossRefGoogle Scholar
  46. Knoll J (1976) Neuronal peptide (enkephalin) receptors in the ear artery of the rabbit. Eur J Pharmacol 39:403–408PubMedCrossRefGoogle Scholar
  47. Knowles WD, Phillips MI (1980) Angiotensin II responsive cells in the Organum vascu-losum lamina terminalis (OVLT) recorded in hypothalamic brain slices. Brain Res 197:256–259PubMedCrossRefGoogle Scholar
  48. Konishi S, Tsunoo A, Otsuka M (1981) Enkephalin as a transmitter for presynaptic inhibition in sympathetic ganglia. Nature 294:80–82PubMedCrossRefGoogle Scholar
  49. Kosterlitz HW, Paterson SJ, Robson LE (1981) Characterization of the K-subtype of the opiate receptor in the guinea-pig brain. Br J Pharmacol 73:939–949PubMedGoogle Scholar
  50. Kumakura K, Karoum F, Guidotti A, Costa E (1980) Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells. Nature 283:489–492PubMedCrossRefGoogle Scholar
  51. Kunos G, Farsang C, Ramirez-Gonzalez MD. (1981) β-endorphin: possible involvement in the antihypertensive effect of central alpha-receptor activation. Science 211: 82–84PubMedCrossRefGoogle Scholar
  52. Lambert GA, Lang WJ (1970) The effects of bradykinin and eledosin injected into the cerebral ventricles of conscious rats. Eur J Pharmacol 9:338–386CrossRefGoogle Scholar
  53. Landas S, Philipps MI, Stamler JF, Raizada MK (1980) Visualization of specific angiotensin II binding sites in the brain by fluorescent microscopy. Science 210:791–793PubMedCrossRefGoogle Scholar
  54. Lang RE, Rascher W, Heil J, Unger Th, Wiedemann G, Ganten D (1981) Angiotensin stimulates oxytocin release. Life Sci 29:1425–2428PubMedCrossRefGoogle Scholar
  55. Lang RE, Brückner UB, Hermann K, Kempf B, Rascher W, Sturm V, Unger Th, Ganten D (1982a) Effect of hemorrhagig shock on the concomitant release of endorphin and enkephalin-like peptides from the pituitary and adrenal gland in the dog. Adv Biochem Psychopharmacol 33:363–368PubMedGoogle Scholar
  56. Lang RE, Brückner UB, Kempf B, Rascher W, Sturm V, Unger Th, Ganten D (1982b) Opioid peptides and blood pressure regulation. Clin Exp Hypertension A4(l–2): 249–269CrossRefGoogle Scholar
  57. Lang RE, Hermann K, Gaida W, Ganten D, Kraft K, Unger Th (1983a) Evidence for the presence of enkephalins in the guinea pig heart. Life Sci 32:399–406PubMedCrossRefGoogle Scholar
  58. Lang RE, Taugner G, Gaida W, Ganten D, Kraft K, Unger Th, Wunderlich I (1983b) Evidence against co-storage of enkephalins with noradrenaline in bovine adrenal medullary granules. Eur J Pharmacol 86:117–120CrossRefGoogle Scholar
  59. Laubie M, Schmitt H (1981) Sites of vagally mediated bradycardia induced by morphine like agents and opioid peptides. In: Buckley JP, Ferrario CM (eds) Central nervous system mechanisms in hypertension. Raven Press, New York (Perspectives in cardiovascular research, vol 6, pp 235–247)Google Scholar
  60. Laubie M, Schmitt H, Canellas J, Roquebert J, Demichel P (1974) Centrally mediated bradycardia and hypotension induced by narcotic analgesics: dextromoramide and fentanyl. Eur J Pharmacol 28:66–75PubMedCrossRefGoogle Scholar
  61. Laubie M, Schmitt H, Drouillat M (1977) Central sites and mechanisms of the hypotensive and bradycardia effects of the narcotic analgesic agent fentanyl. Naunyn Schmiedebergs Arch Pharmacol 296:255–261PubMedCrossRefGoogle Scholar
  62. Lemaire I, Tseng R, Lemaire S (1978) Systemic administraton of β-endorphin: potent hypotensive effect involving a serotoninergic pathway. Proc Natl Acad Sci 75:6240–6242PubMedCrossRefGoogle Scholar
  63. Loewy AD, McKellar S (1980) The neuroanatomical basis of central cardiovascular control. Fed Proc 39:2495–2503PubMedGoogle Scholar
  64. Lord JAH, Waterfield AA, Huges J, Kosterlitz HW (1977) Endogenous opioid peptides, multiple agonists and receptors. Nature 267:495–499PubMedCrossRefGoogle Scholar
  65. Lundberg JM, Hökfelt T, Kewenter J, Petterson G, Ahlman H, Edin R, Dahlstrom A, Nilsson G, Terenius L, Vvnas-Wallenstein K, Said S (1979) Substance P, VIP and enkephalin like immunoreactivity in human vagus nerve. Gastroenterology 77:468–471PubMedGoogle Scholar
  66. Mann JFE, Phillips MI, Dietz R, Haebara H, Ganten D (1978) Effects of central and peripheral angiotensin blockade in hypertensive rats. Am J Physiol 234:H629–H637PubMedGoogle Scholar
  67. Meyer DK, Phillips MI, Eiden LJ (1982) Studies on the presence of angiotensin II in rat brain. Neurochem 38:816–820CrossRefGoogle Scholar
  68. Petty MA, De Jong W (1982a) Cardiovascular effects of β-endorphin after microinjection into the nucleus tractus solitarii of the anaesthetized rat. Eur J Pharmacol 81:449–457PubMedCrossRefGoogle Scholar
  69. Petty MA, De Jong W (1982b) Does β-endorphin contribute to the central antihypertensive action of alpha-methyldopa in rats? Clin Sci 63:293s–295sGoogle Scholar
  70. Petty MA, Reid JL (1981) Central peptides and baroreflex activity: Studies with opiate analogues, substance P and baroreceptor reflexes in the rabbit. Hypertension 3 [Suppl I]:142–147Google Scholar
  71. Petty MA, Reid JL (1982) The effects of opiate on arterial baroreceptor reflex function in the rabbit. Naunyn Schmiedebergs Arch Pharmacol 319:206–211PubMedCrossRefGoogle Scholar
  72. Petty MA, De Jong W, De Wied D (1982) An inhibitory role of β-endorphin in central cardiovascular regulation. Life Sci 30:1835–1840PubMedCrossRefGoogle Scholar
  73. Pfeiffer A, Feuerstein G, Faden A, Kopin IJ (1982) Evidence for an involvement of mu but not delta or kappa-opiate receptors in sympathetically and parasympatheti-cally mediated cardiovascular responses to opiates upon anterior hypothalamic injection. Life Sci 31:1279–1282PubMedCrossRefGoogle Scholar
  74. Pham-Hun-Chanh A, Claval P, Lehmann-Schad W (1977) Cardiovascular effects of synthetic substance P. Pharmacology 15:341–347CrossRefGoogle Scholar
  75. Phillips MI, Hoffman WE (1977) Sensitive sites in the brain for blood pressure and drinking responses to angiotensin II. In: Buckley JP, Ferrario CM (eds) Central actions of angiotensin and related hormones. Pergamon Press, New York, pp 325- 356Google Scholar
  76. Phillips MI, Deshmukh P, Larsen L (1977) Are the central effects of angiotensin due to peripheral angiotensin II crossing the blood brain barrier? Soc Neurosci Prog 3:510Google Scholar
  77. Phillips MI, Weyhenmeyer J, Felix D, Ganten D, Hoffmann WE (1979) Evidence for an endogenous brain renin-angiotensin system. Fed Proc 38:2260–2266PubMedGoogle Scholar
  78. Ramirez-Gonzalez MD, Farsang C, Tchakarov L, Kunos G (1982) Opiate antagonists reverse the centrally mediated antihypertensive action of propranolol in spontaneously hypertensive rats. Eur J Pharmacol 81:167–170PubMedCrossRefGoogle Scholar
  79. Ramsay DJ, Reid IA (1975) Some central mechanisms of thirst in the dog. J Physiol (Lond) 253(2):517–525Google Scholar
  80. Reid IA (1977) Is there a brain renin-angiotensin system? Circ Res 41:147–153PubMedGoogle Scholar
  81. Reid IA, Day RP (1977) Interactions and properties of some components of the reninangiotensin system in brain. In: Buckley JP, Ferrario CM (eds) Central actions of angiotensin and related peptides. Pergamon Press, New York, pp 255–270Google Scholar
  82. Rix E, Ganten D, Schiill B, Unger Th, Taugner R (1981) Converting-enzyme in the chorioid plexus, brain, and kidney: immunocytochemical and biochemical studies in rats. Neurosci Lett 22:125–130PubMedCrossRefGoogle Scholar
  83. Ronari AZ, Harsing LG, Berzetei IB, Bajusz S, Vizi ES (1982) (Met5Enkephalin-Arg-Phe acts on vascular opiate receptors. Eur J Pharmacol 79:337–338CrossRefGoogle Scholar
  84. Rossier J (1982) Opioid peptides have found their roots. Nature 298:221–222PubMedCrossRefGoogle Scholar
  85. Sander G, Giles T, Kastin A, Kaneish A, Coy D (1982) Leucine-enkephalin: reversal of intrinsic cardiovascular stimulation by pentobarbital. Eur J Pharmacol 78:467–470PubMedCrossRefGoogle Scholar
  86. Schaz K, Stock G, Simon W, Schlor KH, Unger Th, Rockhold R, Ganten D (1980) Enkephalin effects on blood pressure, heart rate and baroreceptor reflex. Hypertension 2:395–407PubMedGoogle Scholar
  87. Schelling P, Speck G, Unger Th, Ganten D (1980a) The brain renin-angiotensin system: biochemistry, localization, and functional aspects. In: Parvez S, Parvez H (eds) A centenary tribute to Claude Bernard. Elsevier, Amsterdam (Advances in experimental medicine, pp 243–288)Google Scholar
  88. Schelling P, Ganten U, Sponer G, Unger Th, Ganten D (1980b) Components of the renin-angiotensin system in the cerebrospinal fluid of rats and dogs with special consideration of the origin and the fate of angiotensin II. Neuroendocrinology 31:297–308PubMedCrossRefGoogle Scholar
  89. Severs WB, Daniels-Severs AE (1973) Effects of angiotensin on the central nervous system. Pharmacol Rev 25:415–449PubMedGoogle Scholar
  90. Severs WB, Summy-Long J, Taylor JS, Connor JD (1970) A central effect of angiotensin: release of pituitary pressor material. J Pharmacol Exp Ther 174:27–34PubMedGoogle Scholar
  91. Simon EJ (1981) Opiate receptors: some recent developments. TIPS 6:155–158Google Scholar
  92. Simon W, Schaz K, Ganten U, Stock G, Schlör KH, Ganten D (1978) Effects of enkephalins on arterial blood pressure are reduced by propranolol. Clin Soc Mol Med 55:237s–241sGoogle Scholar
  93. Smookler HH, Severs WB, Kinnard WJ, Buckley JP (1966) Centrally mediated cardiovascular effects of angiotensin II. J Pharmacol Exp Ther 153:485–494PubMedGoogle Scholar
  94. Soffer RL (1976) Angiotensin-Converting enzyme and the regulation of vasoactive peptides. Ann Rev Biochem 45:73–94PubMedCrossRefGoogle Scholar
  95. Stamler JF, Brody MJ, PHillips MI (1980a) The central and eripheral effects of Captopril (SQ 14225) on the arterial pressure of the spontaneously hypertensive rat. Brain Res 186:499–503PubMedCrossRefGoogle Scholar
  96. Stamler JF, Raizada MK, Fellows RE, Phillips MI (1980b) Increased specific binding of angiotensin II in theOrganum vasculosum of the lamina terminalis area of the spontaneously hypertensive rat brain. Neurosci Lett 17:173–177PubMedCrossRefGoogle Scholar
  97. Talman WT, Reis DJ (1981) Baroreflex actions of substance P microinjected into the nucleus tractus solitarii in rat: a consequence of local distortion. Brain Res 220: 402–407PubMedCrossRefGoogle Scholar
  98. Traczyk WY, Kubicki J (1980) The pressor response to substance P and hexapeptide (glu6) SP6–11 injections into the cerebral ventricle in rats. Neuropharmacology 19: 607–611PubMedCrossRefGoogle Scholar
  99. Unger Th, Rockhold RW, Yukimura T, Rettig R, Ganten D (1980) Blood pressure and heart rate responses to centrally administered substance P are increased in spontaneously hypertensive rats. Clin Sci 59:299s–304sPubMedGoogle Scholar
  100. Unger Th, Kaufmann-Bühler I, Schölkens B, Ganten D (1981a) Brain converting enzyme inhibition: a possible mechanism for the antihypertensive actin of Captopril in spontaneously hypertensive rats. Eur J Pharmacol 70:467–478PubMedCrossRefGoogle Scholar
  101. Unger Th, Rascher W, Schuster Ch, Pavloviteh T, Schömig A, Dietz R, Ganten D (1981b) Central blood pressure effects of substance P and angiotensin II: Role of the sympathetic nervous system and vasopressin. Eur J Pharmacol 71:33–42PubMedCrossRefGoogle Scholar
  102. Unger Th, Yukimura T, Stock G, Lang RE, Ganten D (1981c) Central effects of angiotensin on blood pressure and thirst are inhibited by GABA. Naunyn Schmiedebergs Arch Pharmacol 316:281Google Scholar
  103. Unger Th, Ganten D, Lang RE, Rascher W. (198Id) Brain peptides and blood pressure control. TIPS 2:289–292Google Scholar
  104. Watson SJ, Barchas JD (1979) Anatomy of the endogenous opioid peptides and related substances: the enkephlains, ß-endorphin, β-lipotropin and ACTH. In: Beer RF, Bassett EG (eds) Mechanisms of pain and analgesic compounds. Raven Press, New York, pp 227–238Google Scholar
  105. Weyhenmeyer JA, Raizada MK, Phillips MI, Fellows RE (1980) Presence of angiotensin II in neurons cultured from fetal rat brain. Neurosci Lett 16:41–46PubMedCrossRefGoogle Scholar
  106. Yukimura T, Unger Th, Rascher W, Lang RE, Ganten D (1981) Central peptidergic stimulation in blood pressure control: role of enkephalins in rats. Clin Sci 61: 347s–350sPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • R. E. Lang
  • W. Gaida
  • D. Ganten
  • K. Hermann
  • K. Kraft
  • Th. Unger
    • 1
  1. 1.German Institute for High Blood Pressure and Department of PharmacologyUniversity of HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations