Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 61))

Abstract

The term rifamycins indicates a large group of related compounds sharing as a common structural feature, a naphthohydroquinone chromophore spanned by a an aliphatic ansa chain. Originally, a mixture of five compounds, designated rifamycins A–E, was isolated from the fermentation broth of Nocardia mediterranei (Sensi et al. 1959 a, b). It was subsequently found that one of the compounds, rifamycin B, was produced almost exclusively when sodium diethylbarbiturate was present in the fermentation medium (Margalith and Pagani 1961). Chemical modification of this compound, particularly in the 3 position, yielded additional compounds with more extensive antimicrobial activity. The best known of these is the derivative 3-(4-methylpiperazinoiminomethyl) rifamycin SV, or more simply, rifampicin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson R (1971) Antitumor activity of two antiviral drugs — rifampicin and tilorone. Lancet I: 398

    Google Scholar 

  • Adamson RH, Sieber SM, Whang-Peng J, Wood HB (1976) Experimental studies with the antitumor agent maytansine. Proc Am Assoc Cancer Res 17: 42

    Google Scholar 

  • Asai M, Mizuta E, Izawa M, Haibara K, Kishi T (1979) Isolation, chemical characterization and structure of ansamitocin, a new antitumor ansamycin antibiotic. Tetrahedron 35: 1079–1085

    CAS  Google Scholar 

  • Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature 226: 1209–1211

    PubMed  CAS  Google Scholar 

  • Barlati S, Vigier P (1972) Effect of two rifamycin derivatives on the Rous sarcoma virus transformation system. J Gen Virol 17: 221–225

    PubMed  CAS  Google Scholar 

  • Barlati S, Vigier P (1972b) Selective inhibition of Rous sarcoma virus production in transformed chick fibroblasts by two rifamycin derivatives. FEBS Letters 24: 343–346

    CAS  Google Scholar 

  • Becker Y (1971) Antitrachoma activity of rifamycin B and 8–0-acetylrifamycin S. Nature 231: 115–116

    PubMed  CAS  Google Scholar 

  • Becker Y (1978) The Chlamydia: molecular biology of procaryotic obligate parasites of eucaryocytes. Microbiol Rev 42: 274–306

    PubMed  CAS  Google Scholar 

  • Becker Y, Asher Y (1972) Synthesis of trachoma agent proteins in emetine-treated cells. J Bact 109: 966–970

    PubMed  CAS  Google Scholar 

  • Becker Y, Zakay-Rones Z (1969) Rifampicin—A new antitrachoma agent. Nature 222: 851–853

    PubMed  CAS  Google Scholar 

  • Becker Y, Asher Y, Himmel N, Zakay-Rones Z, Maythar B (1969) Rifampicin inhibition of trachoma agent in vivo. Nature 224: 33–34

    PubMed  CAS  Google Scholar 

  • Becker Y, Asher Y, Himmel N, Zakay-Rones Z (1970) Antitrachoma activity of rifampicin and rifamycin SV derivatives. Nature 225: 454–455

    PubMed  CAS  Google Scholar 

  • Ben-Ishai A, Heller E, Goldblum N, Becker Y (1969) Rifampicin and poxvirus replication. Nature 224: 29–32

    PubMed  CAS  Google Scholar 

  • Binda G, Domenichini E, Gottardi A, Orlandi B, Ortelli E, Pacini B, Fowst G (1971) Rifampicin, a general review. Arzneimittel-Forschung 12a: 1907–1976

    Google Scholar 

  • Bishop JM (1978) Retroviruses. Ann Rev Biochem 47: 35–88

    CAS  Google Scholar 

  • Bissell M, Hatie C, Tischler A, Calvin M (1974) Preferential inhibition of the growth of virus-transformed cells in culture by rifazone-82, a new rifamycin derivative. Proc Natl Acad Sci USA 71: 2520–2524

    PubMed  CAS  Google Scholar 

  • Borden EC, Brockman WW, Carter WA (1971) Selective inhibition by streptovaricin of splenomegaly induced by Rauscher leukemia virus. Nature New Biol 232: 214–216

    PubMed  CAS  Google Scholar 

  • Bouch J, Zechel K, Kornberg A (1975) DnaG gene product, a rifampicin resistant RNA polymerase, initiates the conversion of a single-stranded coliphage DNA to its duplex replicative form. J Biol Chem 250:5995–6001

    Google Scholar 

  • Brufani M (1977) The Ansamycins. In: Sammes PG (ed) Topics in antibiotic chemistry, vol 1. Aminoglycosides and ansamycins. Ellis Horwood, Chichester, pp 93–217

    Google Scholar 

  • Brufani M, Cerrini S, Fedeli W, Vaciago A (1974) Rifamycins: an insight into biological activity based on structural investigations. J Mol Biol 87: 409–435

    PubMed  CAS  Google Scholar 

  • Brutlag D, Schekman R, Kornberg A (1971) A possible role for RNA polymerase in the initiation of M13 DNA synthesis. Proc Natl Acad Sci USA 68: 2826–2829

    PubMed  CAS  Google Scholar 

  • Calvin M, Joss UR, Hackett AJ, Owens RB (1971) Effect of rifampicin and two of its derivatives on cells infected with Moloney sarcoma virus. Proc Natl Acad Sci USA 68: 1441–1443

    PubMed  CAS  Google Scholar 

  • Carter WA, Brockman WW, Borden EC (1971) Streptovaricins inhibit focus formation by MSV(MLV) complex. Nature New Biol 232: 212–214

    PubMed  CAS  Google Scholar 

  • Chamberlin M (1976) RNA polymerase-An overview. In: Losick R, Chamberlin M (eds) RNA polymerase. Cold Spring Harbor Laboratory, New York, pp 17–67

    Google Scholar 

  • Chamberlin M, McGrath J, Waskell L (1970) New RNA polymerase from Escherichia coliinfected with bacteriophage T7. Nature 228: 227–231

    PubMed  CAS  Google Scholar 

  • Costanzo F, Fiume L, La Placa M, Mannini-Palenzona A, Novello G, Stirpe F (1970) Ribonucleic acid polymerase induced by vaccinia virus: lack of inhibition by rifampicin and a-amanitin. J Virol 5: 226–269

    Google Scholar 

  • Cricchio R, Cietto G, Rossi E, Arioli V (1975) Farmaco Ed Sci 30: 704

    CAS  Google Scholar 

  • Dales S, Mosbach ED (1968) Vaccinia as a model for membrane biogenesis. Virol 35: 564–583

    CAS  Google Scholar 

  • Darougar S, Viswalingam M, Treharne JD, Kinnison JR, Jones BR (1977) Treatment of TRIC infection of the eye with rifampicin or chloramphenicol. Brit J Opthalm 61: 255–259

    CAS  Google Scholar 

  • Das J, Maniloff J (1976) Replication of mycoplasma virus MVL51. IV Inhibition of viral synthesis by rifampin. J Virol 18: 969–976

    PubMed  CAS  Google Scholar 

  • DiCioccio RA, Srivastava SBI (1978) Structure-activity relationships and specificity of inhibition of DNA polymerases from normal and leukemia cells of man and from simian sarcoma virus by rifamycin derivatives. J Natl Cancer Instit 61: 1187–1194

    CAS  Google Scholar 

  • Diggelman H, Weissman C (1969) Rifampicin inhibits focus formation in chick fibroblasts infected with Rous sarcoma virus. Nature 224: 1277–1279

    Google Scholar 

  • Engelberg H (1972) Inhibition of RNA bacteriophage replication by rifampicin. J Mol Biol 68: 541–546

    PubMed  CAS  Google Scholar 

  • Engelberg H, Soudry E (1971) Inhibition of ribonucleic acid bacteriophage release from its host by rifampin. J Virol 7:847–848

    PubMed  CAS  Google Scholar 

  • Engelberg H, Soudry E (1971) Ribonucleic acid bacteriophage release: requirement for host-controlled protein synthesis. J Virol 8: 257–264

    PubMed  CAS  Google Scholar 

  • Engelberg H, Brudo I, Israeli-Reches M (1975) Discriminative effect of rifampin on RNA replication of various RNA bacteriophages. J Virol 16: 340–347

    PubMed  CAS  Google Scholar 

  • Essani K, Dales S (1979) Biogenesis of vaccinia: evidence for more than 100 polypeptides in the virion. Virol 95: 385–394

    CAS  Google Scholar 

  • Esteban M (1977) Rifampicin and vaccinia DNA. J Virol 21: 796–801

    PubMed  CAS  Google Scholar 

  • Esteban M, Holowczak JA (1977) Replication of vaccinia DNA in mouse L cells. Virol 78: 57–75

    CAS  Google Scholar 

  • Fallon RJ, Lees AW, Allan GW, Smith J, Tyrrell WF (1975) Probenecid and rifampicin serum levels. Lancet 11: 792–794

    Google Scholar 

  • Follett EAC, Pennington TH (1971) Antiviral effect of constituent parts of the rifampicin molecule. Nature 230: 117–118

    PubMed  CAS  Google Scholar 

  • Follett EAC, Pennington TH (1973) The mode of action of rifamycins and related compounds on poxvirus. Advances in Virus Res 18: 105–142

    CAS  Google Scholar 

  • Frolova LY, Meldrays YA, Kochkina LL, Giller SA, Eremeyev AV, Grayevskaya NA, Kisselev LL (1977) DNA polymerase inhibitors. Rifamycin derivatives. Nucleic Acids Res 4: 523–538

    PubMed  CAS  Google Scholar 

  • Fromageot H, Zinder N (1968) Growth of bacteriophage f2 in E. colitreated with rifampicin. Proc Natl Acad Sci USA 61: 184–191

    PubMed  CAS  Google Scholar 

  • Furukawa T, Tanaka S, Plotkin SA (1975) Inhibition of human cytomegalovirus by rifampin. J Gen Virol 28: 355–362

    Google Scholar 

  • Gallo RC (1971) Reverse transcriptase, the DNA polymerase of oncogenic RNA viruses. Nature 234: 194–198

    PubMed  CAS  Google Scholar 

  • Gallo RC, Yang SS, Ting RC (1970) RNA-dependent DNA polymerase of human acute leukaemic cells. Nature 228: 927–929

    PubMed  CAS  Google Scholar 

  • Gallo RC, Yang SS, Smith RG, Herrera F, Ting RC, Bobrow SN, Davis C, Fujioka S (1971) RNA- and DNA-dependent DNA polymerases of human normal and leukemic cells. In: Silvestri L (ed) The biology of oncogenic viruses. North-Holland, Amsterdam, pp 210–220

    Google Scholar 

  • Gallo RC, Smith RC, Whang-Peng J, Ting RC, Yang SS, Abrell JW (1972) RNA tumor viruses, DNA polymerases, and oncogenesis: some selective effects of rifampicin derivatives. Medicine 51: 159–168

    PubMed  CAS  Google Scholar 

  • Geiduschek EP, Sklar J (1969) Continual requirement for a host RNA polymerase component in bacteriophage development. Nature 221: 833–836

    PubMed  CAS  Google Scholar 

  • Gerard GF, Gurgo C, Grandgenett DP, Green M (1973) Rifamycin derivatives: specific inhibitors of nucleic acid polymerases. Biochem Biophys Res Commun 53: 194–201

    PubMed  CAS  Google Scholar 

  • Geshelin P, Berns KI (1974) Characterization and localization of the naturally occurring cross-links in vaccinia virus DNA. J Mol Biol 88: 785–796

    PubMed  CAS  Google Scholar 

  • Gielkins A, Burghouts J, Bloemendal H (1972) Inhibitory effect of rifampicin on Rauschervirus-induced murine leukemia. Int J Cancer 9: 595–598

    Google Scholar 

  • Grado C, Ohlbaum A (1973) The effect of rifampicin, actinomycin D, and mitomycin C on poliovirus and foot-and-mouth disease virus replication. J Gen Virol 21: 297–303

    PubMed  CAS  Google Scholar 

  • Green M, Rokutanda M, Fujinaga K, Ray RK, Rokutanda H, Gurgo C (1970) Mechanism of carcinogenesis by RNA tumor viruses. I. An RNA-dependent DNA polymerase in murine sarcoma cells. Proc Natl Acad Sci USA 67: 385–393

    PubMed  CAS  Google Scholar 

  • Green M, Rokutanda M, Fujinaga K, Rokutanda H, Gurgo C, Ray RK, Parsons JT (1971) Synthesis of DNA by RNA tumor viruses and viral RNA by virus transformed cells. In: Silvestri L (ed) The biology of oncogenic viruses. North-Holland, Amsterdam, pp 193–205

    Google Scholar 

  • Green M, Bragdon J, Rankin A (1972) B-cyclic amine derivatives of rifamycin: strong inhibitors of the DNA polymerase activity of RNA tumor viruses. Proc Natl Acad Sci USA 69:1294–1298

    PubMed  CAS  Google Scholar 

  • Green M, Gerard GF, Grandgenett DP, Gurgo C, Rankin AM, Green MR, Cassel DM (1974a) Biochemical suppression of tumor virus activity. Cancer 34:1427–1438

    PubMed  CAS  Google Scholar 

  • Green M, Gurgo C, Gerard G, Grandgenett DP, Shimada K (1974b) Inhibition of DNA polymerases of RNA tumor viruses and cells by rifamycin SV derivatives. In: Molecular studies in viral neoplasia. William and Wilkins Co, Baltimore, pp 258–288

    Google Scholar 

  • Grimley PM, Rosenblum EN, Mims SJ, Moss B (1970) Interruption by rifampicin of an early stage in vaccinia virus morphogenesis: accumulation of membranes which are precursors of virus envelopes. J Virol 6: 519–533

    PubMed  CAS  Google Scholar 

  • Grimley PM, Moss B (1971) Similar effect of rifampicin derivatives on vaccina virus morphogenesis. J Virol 8: 225–231

    PubMed  CAS  Google Scholar 

  • Gurgo C (1977) Rifamycins as inhibitors of DNA and RNA polymerases. Pharm Ther Part A 2: 139–169

    CAS  Google Scholar 

  • Gurgo C (1980) Rifamycins as inhibitors of DNA and RNA polymerases. In: Sarin P, Gallo RC (eds) The international encyclopedia of pharmacology and therapeutics, section 103. Pergamon Press, Oxford, pp 159–189

    Google Scholar 

  • Gurgo C, Grandgenett DP (1977) Different modes of inhibition of purified ribonucleic acid polymerase of avian myeloblastosis virus by rifamycin SV derivatives. Biochemistry 16: 786–792

    PubMed  CAS  Google Scholar 

  • Gurgo C, Craig E, Schlessinger D, Afolayan A (1971a) Polyribosome metabolism in Escherichia coli starved for an amino acid. J Mol Biol 62:525–535

    PubMed  CAS  Google Scholar 

  • Gurgo C, Ray RK, Thiry L, Green M (1971 b) Inhibition of the RNA and DNA dependent polymerase activities of RNA tumor viruses. Nature 229:111–114

    CAS  Google Scholar 

  • Gurgo C, Ray RK, Green M (1972) Rifamycin derivatives strongly inhibiting RNA-DNA polymerase (reverse transcriptase) of murine sarcoma viruses. J Natl Cancer Instit 49: 61–79

    CAS  Google Scholar 

  • Gurgo C, Grandgenett DP, Gerard GF, Green M (1974) Interaction of purified ribonucleic acid directed deoxyribonucleic acid polymerase of avian myeloblastosis virus and murine sarcoma-leukemia virus with a rifamycin SV derivative. Biochemistry 13: 708–713

    PubMed  CAS  Google Scholar 

  • Gurgo C, Grandgenett DP, Gerard GF, Green M (1975) Mechanism of inhibition of RNA tumor virus reverse transcriptase by rifamycin SV derivatives. In: Kolber A (ed) Tumor virus-host cell interaction. Plenum, New York, pp 273–291

    Google Scholar 

  • Hackett AJ, Sylvester SS (1972a) Cell line derived from BALB/3T3 that is transformed by murine leukemia virus: a focus assay for leukemia virus. Nature New Biol 239:164–166

    PubMed  CAS  Google Scholar 

  • Hackett AJ, Sylvester SS (1972b) Inhibition of MLV-induced transformation in BALB/3T3 derived cells. Nature New Biol 239: 166–167

    PubMed  CAS  Google Scholar 

  • Hackett AJ, Owens RB, Calvin M, Joss U (1972) Inhibition of MSV viral function by rifampicin derivatives. Medicine 51: 175–180

    PubMed  CAS  Google Scholar 

  • Halsted C, Minnefor A, Lietman P (1972) Inhibition of cytomegalovirus by rifampin. J Infectious Dis 125: 552–555

    CAS  Google Scholar 

  • Haselkorn R, Vogel M, Brown R (1969) Conservation of the rifamycin sensitivity of transcription during T4 development. Nature 221: 836–838

    PubMed  CAS  Google Scholar 

  • Heller E, Argaman M, Levy H, Goldblum N (1969) Selective inhibition of vaccinia virus by the antibiotic rifampicin. Nature 222: 273–274

    PubMed  CAS  Google Scholar 

  • Hemphill H, Whiteley H, Brown L, Doi R (1969) The effect of rifampin on the production of ß22 phage by Bacillus subtilis. Biochem Biophys Res Commun 37: 559–566

    PubMed  CAS  Google Scholar 

  • Higashi A, Komano T (1977) Inhibition of bacteriophage CX174 replicative-form DNA replication by rifampicin. Agric Biol Chem 41: 383–388

    CAS  Google Scholar 

  • Higashide E, Asai M, Ootsu K, Tanida S, Kozai Y, Hasegawa T, Kishi T, Sugino Y, Yoneda M (1977) Ansamitocin, a group of novel maytansinoid antibiotics with antitumor properties from Nocardia. Nature 270: 721–722

    PubMed  CAS  Google Scholar 

  • Hughes AM, Calvin M (1976) Effect of some rifamycin derivatives on chemically induced mammary tumors in rats. Cancer Letters 2: 5–10

    PubMed  CAS  Google Scholar 

  • Igel HJ, Huebner RJ, Turner HC, Kotin P, Falk HL (1969) Mouse leukemia virus activation by chemical carcinogens. Science 166: 1624–1626

    PubMed  CAS  Google Scholar 

  • Jockusch H, Ball LA, Kaesbert P (1970) Synthesis of polypeptides directed by the RNA of phage Qß. Virol 42: 401–414

    CAS  Google Scholar 

  • Johnston DE, McClure WR (1976) Abortive initiation of in vitro RNA synthesis on bacteriophage 2DNA. In: Losick R, Chamberlin M (eds) RNA polymerase. Cold Spring Harbor Laboratory, New York, pp 413–428

    Google Scholar 

  • Joss UR, Hughes AM, Calvin M (1973) Effect of dimethylbenzyldesmethylrifampicin (DMB) on chemically induced mammary tumors in rats. Nature New Biol 242: 88–90

    PubMed  CAS  Google Scholar 

  • Kates JR, McAuslan BR (1967) Poxvirus DNA-dependent RNA polymerase. Proc Natl Acad Sci USA 58: 134–141

    PubMed  CAS  Google Scholar 

  • Katz E, Moss B (1970) Formation of a vaccinia virus structural polypeptide from a higher molecular weight precursor: inhibition by rifampicin. Proc Natl Acad Sci USA 66: 677–684

    PubMed  CAS  Google Scholar 

  • Katz E, Moss B (1970) Vaccinia virus structural polypeptide derived from a high-molec-ular-weight precursor: formation and integration into virus particles. J Virol 6: 717–726

    PubMed  CAS  Google Scholar 

  • Katz E, Grimley P, Moss B (1970) Reversal of antiviral effects of rifampicin. Nature 227: 1050–1051

    PubMed  CAS  Google Scholar 

  • Kenwright S, Levi AJ (1973) Impairment of hepatic uptake of rifamycin antibiotics by probenecid and its therapeutic implications. Lancet 11: 1401–1405

    Google Scholar 

  • Kishi T, Yamana H, Muroi M, Harada S, Asai M, Hasegawa T, Mizuno K (1972) Tolypomycin, a new antibiotic. III. Isolation and characterization of tolypomycin Y. J Antibiotics 25: 11

    CAS  Google Scholar 

  • Kupchan SM, Komoda Y, Court WA, Thomas GT, Smith RM, Karim A, Gilmore CJ, Haltiwanger RC, Bryan RF (1972) Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc 94: 1354–1356

    PubMed  CAS  Google Scholar 

  • Kupchan SM, Sneden AT, Branfman AR, Howie GA, Rebhun LI, Mclvor WE, Wang RW, Schnaitman TC (1978) Structural requirements for antileukemic activity among the naturally occurring and semisynthetic maytansinoids. J Med Chem 21: 31–37

    PubMed  CAS  Google Scholar 

  • Lancini GC, Sartori G (1968) Rifamycins. LXI. In vivo inhibition of RNA synthesis by rifamycins. Experientia 24: 1105–1106

    Google Scholar 

  • Lancini GC, Zanichelli W (1977) Structure-activity relationships in rifamycins. In: Perlman D (ed) Structure-activity relationships among the semisynthetic antibiotics. Academic Press, New York, pp 531–600

    Google Scholar 

  • Lancini GC, Cricchio R, Thiry L (1971) Antiviral activity of rifamycins and N-aminopiperazines. J Antibiotics 24: 64–66

    CAS  Google Scholar 

  • Maitra U (1971) Induction of a new RNA polymerase in Escherichia coliinfected with bacteriophage T3. Biochem Biophys Res Commun 43: 443–450

    PubMed  CAS  Google Scholar 

  • Margalith P, Pagani H (1961) Rifomycins. XIV. Production of rifomycin B. Appli Microbiol 9: 325–334

    CAS  Google Scholar 

  • Marino P, Baldi I, Tocchini-Valentini G (1968) Effect of rifamycin on DNA dependent RNA polymerase and on RNA phage growth. Cold Spring Harbor Symp Quant Biol 33: 125–127

    PubMed  CAS  Google Scholar 

  • McAuslan BR (1969) Rifampicin inhibition of vaccinia replication. Biochem Biophys Res Commun 37: 289–295

    PubMed  CAS  Google Scholar 

  • McCormick DP, Wenzel RP, Smith EP, Beam WE (1972) Failure of rifampicin to inhibit adenovirus replication. Antimicrob Ag Chemother 2: 326–328

    CAS  Google Scholar 

  • Meir D, Hofschneider P (1972) Effect of rifampicin on the growth of bacteriophage M12. FEBS Letters 25: 179–183

    Google Scholar 

  • Milavetz B, Horoszewicz J, Rinehart K, Carter W (1976) An immobilized template assay of reverse transcriptase inhibition by ansamycins. Proc Am Assoc Cancer Res 17: 179

    Google Scholar 

  • Mizuno S, Yamazaki H, Nitta K, Umezawa H (1968a) Inhibition of DNA-dependent RNA polymerase reaction of E. coli by streptovaricin. Biochim Biophys Acta 157:322–332

    PubMed  CAS  Google Scholar 

  • Mizuno S, Yamazaki H, Nitta K, Umezawa H (1968 b) Inhibition of initiation of DNA-de-pendent RNA synthesis. Biochem Biophys Res Commun 30:379–385

    CAS  Google Scholar 

  • Moreau M (1974) Inhibition of a vesicular stomatitis virus mutant by rifampin. J Virol 14: 517–521

    PubMed  CAS  Google Scholar 

  • Moreau M, Sanzey B (1977) Rifampin-susceptible mutant of vesicular stomatitis virus: protein and RNA synthesis. J Virol 21: 41–53

    PubMed  CAS  Google Scholar 

  • Moshkowitz A, Goldblum N, Heller E (1971) Studies on the antiviral effect of rifampicin in volunteers. Nature 229: 422–424

    PubMed  CAS  Google Scholar 

  • Moss B, Rosenblum ED (1973) Protein cleavage and poxvirus morphogenesis: tryptic peptide analysis of core precursors accumulated by blocking assembly with rifampicin. J Mol Biol 81: 267–269

    PubMed  CAS  Google Scholar 

  • Moss B, Katz E, Rosenblum EN (1969 ) Vaccinia virus directed RNA and protein synthesis in the presence of rifampicin. Biochem Biophys Res Commun 36:858–865

    PubMed  CAS  Google Scholar 

  • Moss B, Rosenblum ED, Katz E, Grimley PM (1969 b) Rifampicin: a specific inhibitor of vaccinia virus assembly. Nature 224:1280–1284

    PubMed  CAS  Google Scholar 

  • Moss B, Rosenblum EN, Grimley PM (1971) Assembly of vaccinia virus particles from polypeptides made in the presence of rifampicin. Virol 45: 123–134

    CAS  Google Scholar 

  • Moss B, Rosenblum E, Grimley P, Mims S (1972) Rifamycins: modulation of specific antipoxviral activity by small substitutions on the piperazinyliminomethyl side chain. Antimicrob Ag Chemother 2: 181–185

    CAS  Google Scholar 

  • Munyon W, Paoletti E, Grace JT (1967) RNA polymerase in purified infectious vaccinia. Proc Natl Acad Sci USA 58: 2280–2287

    PubMed  CAS  Google Scholar 

  • Nagayama A, Pogo BGT, Dales S (1970) Biogenesis of vaccinia: separation of early stages from maturation by means of rifampicin. Virol 40: 1039–1051

    CAS  Google Scholar 

  • Naimski P, Chroboczek J (1977) Effect of rifampicin on the infectivity of RNA bacteriophage f2. Eur J Biochem 76: 419–423

    PubMed  CAS  Google Scholar 

  • Nevins JR, Joklik WK (1977) Isolation of and properties of the vaccinia virus DNA-dependent RNA polymerase. J Biol Chem 252: 6930–6938

    PubMed  CAS  Google Scholar 

  • O’Connor T, Schiop-Stansly P, Sethi VS, Hadidi A, Okano P (1974) Antiviral antibiotics: inhibition of focus-formation in human or mouse cell cultures by sarcoma-inducing oncornaviruses with rifamycins. Intervirol 3: 63–83

    Google Scholar 

  • O’Connor TE, Aldrich C, Hadidi A, Lomax N, Okano P, Sethi S, Wood HB (1975) Maytansine and geldanamycin inhibition of transformation of mouse cell cultures infected with murine sarcoma virus. Proc Am Assoc Cancer Res 16: 29

    Google Scholar 

  • Ootsu K, Kozai Y, Takeuchi M, Ikeyama S, Igarashi K, Tsukamoto K, Sugino Y, Tashiro T, Tsukagoshi S, Sakurai Y (1980) Effects of new antimitotic antibiotics, ansamitocins, on the growth of murine tumors in vivo and on the assembly of microtubules in vitro. Cancer Res 40: 1707–1717

    PubMed  CAS  Google Scholar 

  • Oppolzer W, Prelog V, Sensi P (1964) Konstitution des Rifamycins B und verwandter Rifamycine. Experientia 20: 336–339

    PubMed  CAS  Google Scholar 

  • Passent J, Kaesberg P (1971) Effect of rifampin on the development of ribonucleic acid bacteriophage Qß. JVirol 8: 286–292

    CAS  Google Scholar 

  • Pennington TH, Follett EAC (1971) Inhibition of poxvirus maturation by rifamycin derivatives and related compounds. J Virol 7: 821–829

    PubMed  CAS  Google Scholar 

  • Pennington TH, Follett EAC, Szilagyi JF (1970) Events in vaccinia virus-infected cells following the reversal of the antiviral action of rifampicin. J Gen Virol 9: 225–237

    PubMed  CAS  Google Scholar 

  • Pennington TH (1973) Vaccinia virus morphogenesis: a comparison of virus-induced antigens and polypeptides. J Gen Virol 19: 65–79

    PubMed  CAS  Google Scholar 

  • Pogo BGT (1971) Biogenesis of vaccina: effect of rifampicin on transcription. Virol 44: 576–581

    CAS  Google Scholar 

  • Quintrell NA, McAuslan BR (1970) Inhibition of poxvirus replication by streptovaricin. J Virol 6: 485–491

    PubMed  CAS  Google Scholar 

  • Rana M, Pinkerton H, Rankin A (1975) Effect of rifamycin and tilorone derivatives on Friend virus leukemia in mice. Proc Soc Exp Biol Med 150: 32–35

    PubMed  CAS  Google Scholar 

  • Remillard S, Rebhun L, Howie GA, Kupchan SM (1975) Antimitotic activity of the potent inhibitor maytansine. Science 189: 1002–1005

    PubMed  CAS  Google Scholar 

  • Rinehart KL (1972) Antibiotics with ansa rings. Accounts of Chemical Research 5: 57–64

    CAS  Google Scholar 

  • Riva S, Silvestri L (1972) Rifamycins: a general view. Ann Rev Microbiol 26: 199–224

    CAS  Google Scholar 

  • Riva S, Fietta A, Silvestri LG (1972) Mechanism of action of a rifamycin derivative (AF013) which is active on the nucleic acid polymerases insensitive to rifampicin. Biochem Biophys Res Commun 49: 1263–1271

    PubMed  CAS  Google Scholar 

  • Robinson H, Robinson W (1971) Inhibition of growth of uninfected and Rous sarcoma virus-infected chick embryo fibroblasts by rifampicin. J Natl Ca Instit 46: 785–788

    CAS  Google Scholar 

  • Rokutanda M, Rokutanda H, Green M, Fujinaga K, Ray RK, Gurgo C (1970) Formation of viral RNA-DNA hybrid molecules by the DNA polymerase of sarcoma-leukemia viruses. Nature 227: 1026–1028

    PubMed  CAS  Google Scholar 

  • Rothwell J, Yamazaki H (1972) Limited production of R17 ribonucleic acid phage in the presence of rifampicin. Biochemistry 11: 3333–3338

    PubMed  CAS  Google Scholar 

  • Schekman R, Wickner W, Westergaard O, Brutlag D, Geider K, Bertsch L, Kornberg A (1972) Initiation of DNA synthesis: synthesis of OX174 replicative form requires RNA synthesis resistant to rifampicin. Proc Natl Acad Sci USA 69: 2691–2695

    PubMed  CAS  Google Scholar 

  • Schlessinger D, Gurgo C, Luzzato L, Apirion D (1969) Polyribosome metabolism in growing and nongrowing E. coli. Cold Spring Harbor Symp Quant Biol 34: 231–242

    PubMed  CAS  Google Scholar 

  • Sensi P (1975) Recent progress in the chemistry and biochemistry of rifamycins. Pure and Applied Chem 41: 15–29

    CAS  Google Scholar 

  • Sensi P, Margalith P, Timbal M (1959) Rifomycin, a new antibiotic-preliminary report. Farmaco, Ed Sci 14: 146–147

    CAS  Google Scholar 

  • Sensi P, Greco A, Ballotta R (1959b) Rifomycins. I. Isolation and properties of rifomycin B and rifomycin complex. Antibiotics Ann, pp 262–270

    Google Scholar 

  • Sethi VS, Okano P (1976) Interaction of rifamycins with mammalian nucleic acid polymerizing enzymes. Biochim Biophys Acta 454: 230–247

    PubMed  CAS  Google Scholar 

  • Shannon W, Westbrook L, Schabel F (1974) Inhibition of Gross murine leukemia virus replication by rifamycin SV and certain of its derivatives in vitro. Intervirol 3: 84–96

    CAS  Google Scholar 

  • Silverstein S, Billen D (1971) Transcription: role in the initiation and replication of DNA synthesis in Escherichia coliand 4X174. Biochim Biophys Acta 247: 383–390

    PubMed  CAS  Google Scholar 

  • Sinkovics J (1971) Antitumor activity of L-asparaginase and rifampicin. Lancet II:48–49

    Google Scholar 

  • Smith HS, Hackett AJ (1974) The specificity of dimethylbenzylrifampicin as an inhibitor of viral induced transformation. Proc Natl Acad Sci USA 71: 2770–2772

    PubMed  CAS  Google Scholar 

  • Smith R, Whang-Peng J, Gallo RC, Levine P, Ting RC (1972) Selective toxicity of rifamycin derivatives for leukaemic human leucocytes. Nature New Biol 236: 166–171

    CAS  Google Scholar 

  • Spiegelman S, Burney A, Das MR, Keydar J, Schlom J, Travnicek M, Watson K (1970) Characterization of the products of RNA-directed DNA polymerases in oncogenic RNA viruses. Nature 227: 563–567

    PubMed  CAS  Google Scholar 

  • Subak-Sharpe JH, Timbury MC, Williams JF (1969) Rifampicin inhibits the growth of some mammalian viruses. Nature 222: 341–345

    PubMed  CAS  Google Scholar 

  • Szabo C, Bissell MJ (1978) Antiviral action of a rifamycin derivative: formation of Rous sarcoma virus particles deficient in 60 to 70S RNA. J Virol 25: 944–947

    PubMed  CAS  Google Scholar 

  • Szabo C, Bissell MJ, Calvin M (1976) Inhibition of infectious Rous sarcoma virus production by a rifamycin derivative. J Virol 18: 445–453

    PubMed  CAS  Google Scholar 

  • Szilâgyi JF, Pennington TH (1971) Effect of rifamycins and related antibiotics on the deoxyribonucleic acid-dependent ribonucleic acid polymerase of vaccinia virus particles. J Virol 8: 133–141

    PubMed  Google Scholar 

  • Takeda Y, Oyama Y, Nakajima K, Yura T (1969) Role of host RNA polymerase for lambda phage development. Biochem Biophys Res Commun 36: 533–538

    PubMed  CAS  Google Scholar 

  • Tan KB, McAuslan BR (1970) Effect of rifampicin on poxvirus protein synthesis. J Virol 6: 326–332

    PubMed  CAS  Google Scholar 

  • Temin H (1971) The protovirus hypothesis: speculations on the significance of RNA-directed DNA synthesis for normal development and for carcinogenesis. J Natl Cancer Instit 46:III-VII

    CAS  Google Scholar 

  • Temin H, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226: 1211–1213

    PubMed  CAS  Google Scholar 

  • Thiry L, Lancini G (1970) Inhibition of vaccinia virus growth by 1-methyl-4-aminopiperazine. Nature 227: 1048–1050

    PubMed  CAS  Google Scholar 

  • Thiry L, Lancini G (1972) Mode of action of rifamycin and aminopiperazine derivatives on animal viruses and cells. FEBS Symp 22: 177–192

    CAS  Google Scholar 

  • Thompson FM, Tischler AN, Adams J, Calvin M (1974) Inhibition of three nucleotide polymerases by rifamycin derivatives. Proc Natl Acad Sci USA 71: 107–109

    PubMed  CAS  Google Scholar 

  • Ting RC, Yang SS, Gallo RC (1972) Reverse transcriptase, RNA tumor virus transformation and derivatives of rifamycin SV. Nature New Biol 236: 163–166

    PubMed  CAS  Google Scholar 

  • Tischler AN, Joss UR, Thompson FM, Calvin M (1973) Synthesis of some rifamycin derivatives as inhibitors of RNA-instructed DNA polymerase function. J Med Chem 16: 1071–1075

    PubMed  CAS  Google Scholar 

  • Tischler AN, Thompson FM, Libertini LJ, Calvin M (1974) Rifamycin derivatives as inhibitors of a ribonucleic acid instructed deoxyribonucleic acid polymerase function. Effect of lipophilicity. J Med Chem 17: 948–952

    PubMed  CAS  Google Scholar 

  • Toolan H, Ledinko N (1972) Effect of rifampicin on the development of tumors induced by adenovirus in male hamsters. Nature New Biol 237: 200–202

    PubMed  CAS  Google Scholar 

  • Ueda Y, Dumbell KR, Tsuruhara T, Tagaya I (1978) Studies on Cotia virus—an unclassified poxvirus. J Gen Virol 40: 263–276

    PubMed  CAS  Google Scholar 

  • Vaheri A, Hanafusa H (1971) Effect of rifampicin and a derivative on cells transformed by Rous sarcoma virus. Cancer Res 31: 2032–2036

    PubMed  CAS  Google Scholar 

  • Wehrli W (1977) Ansamycins: chemistry, biosynthesis, and biological activity. Topics in Current Chemistry 72: 22–49

    Google Scholar 

  • Wehrli W, Staehelin M (1971) Actions of the rifamycins. Bact Rev 35: 290–309

    PubMed  CAS  Google Scholar 

  • Wehrli W, Handschin J, Wunderli W (1976) Interaction between rifampicin and DNA dependent RNA polymerase of E. coli.In: Losick R, Chamberlin M (eds) RNA polymerase. Cold Spring Harbor Laboratory, New York, pp 397–412

    Google Scholar 

  • Wickner W, Brutlag D, Schekman R, Kornberg A (1972) RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proc Natl Acad Sci 69: 965–969

    PubMed  CAS  Google Scholar 

  • Wigand R, Vujic A, Schöner M (1974) Inhibition of adenovirus multiplication by rifamycin derivatives. Acta Virol 18: 113–120

    CAS  Google Scholar 

  • Wu AM, Gallo RC (1974) Interaction between murine type-C virus RNA-directed DNA polymerases and rifamycin derivatives. Biochim Biophys Acta 340: 419–436

    PubMed  CAS  Google Scholar 

  • Wu AM, Ting RCY, Gallo RC (1973) RNA-directed DNA polymerase and virus-induced leukemia in mice. Proc Natl Acad Sci USA 70: 1298–1302

    PubMed  CAS  Google Scholar 

  • Wu RS, Wolpert-DeFilippes MK, Quinn FR (1980) Quantitative structure-activity correlations of rifamycins as inhibitors of viral RNA-directed DNA polymerase and mammalian a and ß DNA polymerases. J Med Chem 23: 256–261

    PubMed  CAS  Google Scholar 

  • Yang SS, Herrera F, Smith R, Reitz M, Lancini G, Ting R, Gallo RC (1972) Rifamycin antibiotics: inhibitors of Rauscher murine leukemia virus reverse transcriptase and of purified DNA polymerases from human normal and leukemic lymphoblasts. J Natl Cancer Instit 49: 7–25

    CAS  Google Scholar 

  • Zakay-Rones Z, Becker Y (1970) Anti-poxvirus activity of rifampicin associated with hydrazone side chain. Nature 226: 1162–1163

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurgo, C., Bridges, S., Green, M. (1982). Rifamycins. In: Came, P.E., Caliguiri, L.A. (eds) Chemotherapy of Viral Infections. Handbook of Experimental Pharmacology, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68487-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68487-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68489-0

  • Online ISBN: 978-3-642-68487-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics