Skip to main content

Changes in Capillary Permeability

  • Chapter
Microcirculation of the Heart

Abstract

Capillaries of severely ischemic myocardium develop marked alterations in structure and permeability [1–7]. The pathogenesis of these changes is largely unknown; moreover, it has been the subject of relatively little investigative effort. The studies described below were not designed to evaluate capillary permeability in ischemia. Rather, they were aimed at learning the molecular events or series of events which cause ischemic injury to become lethal. Nevertheless, during the course of these experiments, striking changes in capillary structure and function were demonstrated in severely ischemic left ventricular myocardium before and after reperfusion of arterial blood. These changes are the subject of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jennings RB, Sommers H, Smyth GA, Flack HA, Linn H (1960) Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Path 70: 68–78

    PubMed  CAS  Google Scholar 

  2. Krug A, de Rochemont WM, Korb G (1966) Blood supply of the myocardium after temporary coronary occlusion. Circ Res 19: 57–62

    PubMed  CAS  Google Scholar 

  3. Jennings RB, Ganóte CE (1974) Structural changes in myocardium during acute ischemia. Circ Res (Suppl No III) 35: 156–172

    PubMed  Google Scholar 

  4. Kloner RA, Ganóte CE, Whalen D, Jennings RB (1974) Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Path 74: 399–414

    PubMed  CAS  Google Scholar 

  5. Kloner RA, Ganóte CE, Jennings RB, Reimer KA (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J din Invest 54: 1496–1508

    CAS  Google Scholar 

  6. Gavin JB, Seeye RN, Nevalainen TJ, Armiger LC (1978) The effect of ischaemia on the function and fine structure of the microvasculature of myocardium. Pathol 10: 103–111

    Article  CAS  Google Scholar 

  7. West PN, Connors JP, Clark RE, Weldon CS, Ramsey DL, Roberts R, Sobel BE, Williamson JR (1978) Compromised microvascular integrity in ischemic myocardium. Lab Invest 38: 677–684

    Article  PubMed  CAS  Google Scholar 

  8. Chaing J, Kowada JM, Ames III A, Wright RL, Majno G (1968) Cerebral ischemia. III. Vascular changes. Am J Path 52: 455–476

    Google Scholar 

  9. Majno G, Ames III A, Chaing J, Wright RL (1967) No reflow after cerebral ischemia. Lancet 2: 569–570

    Article  Google Scholar 

  10. Kowada M, Ames III A, Majno G, Wright RL (1968) Cerebral ischemia. I. An improved experimental method for study; cardiovascular effects and demonstration of an early vascular lesion in the rabbit. J Neurosurg 20: 150–157

    Google Scholar 

  11. Fischer EG, Ames III A (1972) Studies on mechanisms of impairment of cerebral circulation following ischemia: effect of hemodilation and perfusion pressure. Stroke J Cereb Circ 3: 538–542

    Article  CAS  Google Scholar 

  12. Leaf A (1970) Regulation of intracellular fluid volume and disease. Am J Med 49: 291–295

    Article  PubMed  CAS  Google Scholar 

  13. Whalen Jr, DA, Hamilton DG, Ganóte CE, Jennings RB (1974) Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am J Path 74: 381–398

    PubMed  CAS  Google Scholar 

  14. Jennings RB, Hawkins Hal K (1980) Ultrastructural changes of acute myocardial ischemia. In: Wildenthal K (ed) Degradative Processes in Heart and Skeletal Muscle, Amsterdam/The Netherlands: Elsevier/North Holland, pp 295–346

    Google Scholar 

  15. Constantinides P (1974) Functional electronic histology, A correlation of ultrastructure and function in all mammalian tissues. New York: Scientific Publishing Company

    Google Scholar 

  16. Jennings RB, Sommers HM, Herdson PB, Kaltenbach JP (1969) Ischemic injury of myocardium. Part II. Cardiopathies and factors influencing myocardial degeneration. Ann N Y Acad Sci 156: 61–78

    Article  PubMed  CAS  Google Scholar 

  17. Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA (1978) Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Path 92: 187–214

    PubMed  CAS  Google Scholar 

  18. Jennings RB, Wartman WB (1957) Reactions of the myocardium to obstruction of the coronary arteries. Med Clinics of North Am 41: 13–15

    Google Scholar 

  19. Reimer, KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. I. Myocardial infarct size vs. duration of coronary occlusion in dog. Circ 56: 786–794

    CAS  Google Scholar 

  20. Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death. II. The transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40: 633–644

    PubMed  CAS  Google Scholar 

  21. Adelson E, Kaufmann RM, Berdeguez C, Lear AA, Rheingold JJ (1965) Platelet tagging with tritium labeled diisopropylfluorophosphate. Blood 26: 744–750

    PubMed  CAS  Google Scholar 

  22. Armiger LG, Gavin JB (1975) Changes in the microvasculature of ischemic and infarcted myocardium. Lab Invest 33: 51–56

    PubMed  CAS  Google Scholar 

  23. Caride VS (1977) Liposome accumulation in regions of experimental myocardial infarction. Science 198: 735–738

    Article  PubMed  CAS  Google Scholar 

  24. Feola M, Glick G (1975) Cardial lymph flow and composition in acute myocardial ischemia in dogs. Am J Physiol 229: 44–48

    PubMed  CAS  Google Scholar 

  25. Jennings RB: Early phase of myocardial ischaemic injury and infarction. Am J Cardiol 24: 755–766

    Google Scholar 

  26. Leinberger H, Suehiro GT, McNamara JJ (1979) Myocardial platelet trapping after coronary ligation in primates. J Surg Res 27: 36–40

    Article  PubMed  CAS  Google Scholar 

  27. Schwartz CJ, Gerrity RG (1975) Anatomical pathology of sudden unexpected cardiac death. Circulation (Suppl III) 51, 52: 18–25

    Google Scholar 

  28. West PN, Connors JP, Clark RE, Weldon CS, Ramsey DL, Roberts R, Sobel BE, Williamson JR (1975) Compromised microvascular integrity in ischemic myocardium. Lab Invest 33: 51–56

    Google Scholar 

  29. Clausen T (1975) Metabolic effects on muscular tissue. In: Insulin part II Handbook of exp. Pharmacol. Hasselblatt EA, v. Bruchhausen F (eds) Springer, Berlin Heidelberg New York, p 329

    Google Scholar 

  30. Crone C, Lassen NA (1970) Capillary permeability. Alfred Benzon Symposium II. Crone C and Lassen NA (eds) Munksgard, Kopenhagen

    Google Scholar 

  31. Gerards P, Kammermeier H (1979) Studies on glucose-transport in isolated myocardial cells of adult rats. Pflügers Arch 382: R 4

    Google Scholar 

  32. Kammermeier H, Kammermeier B (1973) Transcapillary exchange rates of substrates in the myocardium (Transkapillare Austauschraten von Substraten im Myokard) Pflügers Arch 339: RIO

    Google Scholar 

  33. Kammermeier H, Kammermeier B (1976) Is substrate supply of the myocardium limited by capillary exchange? In: Recent Adv. Stud Cardiac Struct Metab 7: 61, University Park Press, Baltimore

    Google Scholar 

  34. Kohn MC, Garfinkel D (1978) Computer simulation of entry into glycolysis and lactate output in the ischemic rat heart. J Mol Cell Cardiol 10: 779

    Article  PubMed  CAS  Google Scholar 

  35. Poland JL, Trauner DA (1973) Adrenal influence on the supercompensation of cardiac glycogen following exercise. Am J Physiol 224: 540–542

    PubMed  CAS  Google Scholar 

  36. Reitman J, Baldwin KM, Holloszy JO (1973) Intramuscular triglyceride utilization by red, white and intermediate skeletal muscle and heart during exhausting exercise. Proc Soc Exp Biol Med 142: 628–631

    PubMed  CAS  Google Scholar 

  37. Rose CP, Goresky CA (1977) Constraints on the uptake of labeled palmitate by the heart. The barriers at the capillary and sarcolemmal surfaces and the control of intracellular sequestration. Circ Res 41: 534–545

    PubMed  CAS  Google Scholar 

  38. Bassingthwaighte JB (1974) A concurrent flow model for extraction during transcapillary passage. Circ Res 35: 483–503

    PubMed  CAS  Google Scholar 

  39. Bourdeau-Martin J, Odoroff CL, HonigCR (1974) Dual effect of oxygen on magnitude and uniformity of coronary intercapillary distance. Am J Physiol 226/4: 800–810

    Google Scholar 

  40. Crone C (1963) The permeability of capillaries in various organs as determined by the use of the “indicator diffusion” method. Acta Physiol Scand 58: 292–305

    Article  PubMed  CAS  Google Scholar 

  41. Duran WN (1977) Effects of muscle contraction and of adenosine on capillary transport and micro vascular flow in dog skeletal muscle. Circ Res 41: 642–647

    PubMed  CAS  Google Scholar 

  42. Duran WN, Alvarez OA, Yudilevich DL (1973) Influence of maximal vasodilatation on glucose and sodium blood-tissue transport in canine heart. Micro vase Res 6: 347–359

    Article  CAS  Google Scholar 

  43. Duran WN, Marsieano TH, Anderson RW (1977) Capillary reserve in isometrically contracting dog heart. Am J Physiol 233: H276-H281

    PubMed  CAS  Google Scholar 

  44. Gregg DE, Khouri EM, Rayford CR (1965) Systemic and coronary energetics in the resting unanesthetized dog. Circ Res 16: 102–113

    PubMed  CAS  Google Scholar 

  45. Henquell L, Odoroff CL, Honig CR (1976) Coronary inter capillary distance during growth: relation to p02 and aerobic capacity. Am J Physiol 231/6: 1852–1859

    PubMed  CAS  Google Scholar 

  46. Khouri EM, Gregg DE, Rayford CR (1965) Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ Res 17: 427–437

    PubMed  CAS  Google Scholar 

  47. Martin P, Yudilevich DL (1964) A theory for the quantification of transcapillary exchange by tracer dilution curves. Am J Physiol 207: 162–168

    PubMed  CAS  Google Scholar 

  48. Martini J, Honig CR (1969) Direct measurement of intercapillary distance in beating rat heart in situ under various conditions of 02 supply. Micro vase Res 1: 244–256

    Article  CAS  Google Scholar 

  49. Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197: 1205–1210

    PubMed  CAS  Google Scholar 

  50. Renkin EM, Hudlicka O, Sheehan RM (1966) Influence of metabolic vasodilation on blood- tissue diffusion in skeletal muscle. Am J Physiol 211: 87–98

    PubMed  CAS  Google Scholar 

  51. Reynolds SRM, Kirsch M, Bing RJ (1958) Functional capillary beds in the beating, KCl-arrested and KCl-arrested-perfused myocardium of the dog. Circ Res 6: 600–611

    PubMed  CAS  Google Scholar 

  52. Shipley RA, Shipley LJ, Wearn JT (1937) The capillary supply in normal and hypertrophied hearts of rabbits. J Exp Med 65: 29–42

    Article  PubMed  CAS  Google Scholar 

  53. Steinhausen M, Tillmanns H, Thederan H (1978) Micro circulation of the epimyocardial layer of the heart. Pfliigers Arch 378: 9–14

    Article  CAS  Google Scholar 

  54. Wearn JT (1928) The extent of the capillary bed of the heart. J Exp Med 47: 273–291

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jennings, R.B. et al. (1982). Changes in Capillary Permeability. In: Tillmanns, H., Kübler, W., Zebe, H. (eds) Microcirculation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68485-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68485-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11346-1

  • Online ISBN: 978-3-642-68485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics