Advertisement

Peptides: Locally Active Peptides (“Vasoactive Peptides”)

Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 59 / 2)

Abstract

Angiotensin may be considered the prototype of the so-called vasoactive peptides inasmuch as its predominant effect is on vascular smooth muscle, which is constricted by both direct and indirect effects of the peptide. However, angiotensin may affect contractility of much extravascular smooth muscle with a predominantly, if not exclusively, stimulatory effect. Here, only the effects on gastrointestinal smooth muscle will be considered.

Keywords

Lower Esophageal Sphincter Intestinal Motility Smooth Muscle Preparation Ruminal Contraction Sodium Meclofenamate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboulafia J, Mendes GB, Miyamoto ME, Paiva ACM, Paiva TB (1976) Effect of indomethacin and prostaglandin on the smooth muscle contracting activity of angiotensin and other agonists. Br J Pharmacol 58: 223–228PubMedGoogle Scholar
  2. Bergman J, Oehme P, Jelinek J (1971) Potentiation of angiotensin and eledoisin activities by sodium chloride. Life Sci 17: 969–975Google Scholar
  3. Bertaccini G, Mantovani P, Piccinin GL (1970) Activity ratio between intestinal and cardiovascular actions of caerulein and related substances in the anaesthetized dog. In: Sicuteri F, Rocha e Silva M, Back N (eds) Bradykinin and related kinins. Plenum Press, New York London, pp 213–220Google Scholar
  4. Bertaccini G, Impicciatore M, Molina E, Zappia L (1974) Action of bombesin on human gastrointestinal motility. Rendic, Gastroenterol 6: 45–51Google Scholar
  5. Bisset GW, Lewis GP (1962) A spectrum of pharmacological activity in some biologically active peptides. Brit J Pharmacol 19: 168–182PubMedGoogle Scholar
  6. Blair-West JR, MacKenzie JS (1966) Sodium concentration and the effect of angiotensin II on ileal smooth muscle. Experientia 22: 291PubMedGoogle Scholar
  7. Blumberg A, Denny S, Nishigawa K, Pure E, Marshall GR, Needleman P (1976) Angiotensin III-induced prostaglandin release. Prostaglandins 11: 195–197PubMedGoogle Scholar
  8. Bolton JE, Munday KA, Murley C, Parsons BJ, Poat JA (1976) The relationship between plasma angiotensin II concentrations and fluid transport by rat jejunum in vivo. J Physiol (Lond) 254: 81P-82 PGoogle Scholar
  9. Braun-Menendez E, Fasciolo JC, Leloir LR, Munoz JM (1940) The substance causing renal hypertension. J Physiol (Lond) 98: 283–298Google Scholar
  10. Bumpus FM, Khosla MC (1977) Angiotensin analogs as determinants of the physiologic role of angiotensin and its metabolites. In: Genest J, Koiw O (eds) Hypertension: physiopathology and treatment. McGraw-Hill, New York, pp 183–201Google Scholar
  11. Castellion AW, Fulton RW (1978) Preclinical pharmacology of saralasin. Kidney Int 15: 511Google Scholar
  12. Cessi C, Bettini V (1973) Sulla presenza di recettori per l’angiotensina nello stomaco di ratto. Boll Soc Ital Biol Sper 24: 433–437Google Scholar
  13. Cessi C, Bettini V (1974) Sull’interazione K angiotensina nello stomaco isolato e denervato di ratto. Boll Soc Ital Biol Sper 50: 1231–1234PubMedGoogle Scholar
  14. Cessi C, Bettini V, Rausse A, Legrenzi E (1977) Interazione angiotensina II-Ca’ sulla „taenia coli“ di cavia. Boll Soc Ital Biol Sper 53: 850–855PubMedGoogle Scholar
  15. Cessi C, Bettini V, Perera E, Legrenzi E (1978) Interazioni acetilcolina-angiotensina sull’at-tività elettrica della „Taenia-coli“. Boll Soc Ital Biol Sper 54: 2444–2449PubMedGoogle Scholar
  16. Chong EKS, Downing OA (1973) Selective inhibition of angiotensin induced contractions of smooth muscle by indomethacin. J Pharm Pharmacol 25: 170–171PubMedGoogle Scholar
  17. Chong EKS, Downing OA (1974) Reversal by prostaglandin E of the inhibitory effect of indomethacin on contractions of guinea-pig ileum induced by angiotensin. J Pharm Pharmacol 26: 729–730Google Scholar
  18. Clineschmidt BV, Geller RG, Govier WC, Pisano JJ, Tanimura T (1971) Effects of ranatensin, a polypeptide from frog skin, on isolated smooth muscle. Br J Pharmacol 41: 622–628PubMedGoogle Scholar
  19. Coruzzi G, Bertaccini G (1980) Action of some vasoactive peptides on the isolated lower esophageal sphincter. Pharmacol Res Commun 12: 965–973PubMedGoogle Scholar
  20. Crocker AD, Wilson KA (1974) A study of the metabolic requirements for the contractile action of angiotensin upon guinea pig ileum. Br J Pharmacol 51: 73–79PubMedGoogle Scholar
  21. Crocker AD, Wilson KA (1975) A further investigation into the energy dependence of angiotensin II-induced contractions of isolated smooth muscle preparations. Br J Pharmacol 53: 59–66PubMedGoogle Scholar
  22. Crocker AD, Mayeka IM, Wilson KA (1979) The role of calcium and cyclic AMP in the contractile action of angiotensin II upon rat descending colon. Eur J Pharmacol 60: 121–129PubMedGoogle Scholar
  23. Deleva JI, Nicolov NA (1977) Effect of angiotensin II on motility and mioelectrical activity of the gastrointestinal tract in dogs. Riv Farmacol Ter 8: 211–218Google Scholar
  24. Deleva JI, Nicolov NA (1979) Effect of angiotensin II on the electric and motor activity of stomach and jejunum after complete vagotomy. Agressologie 20: 161–166PubMedGoogle Scholar
  25. Ercan ZS, Türker RK (1977) A comparison between the prostaglandin releasing effects of angiotensin II and angiotensin III. Agents Actions 7: 569–572PubMedGoogle Scholar
  26. Erspamer V, Melchiorri P, Nakajima T, Yasuhara T, Endean R (1979) Aminoacid composition and sequence of crinia-angiotensin, an angiotensin II-like endecapeptide from the skin of the Australian frog Crinia georgiana. Experientia 35: 1132–1133PubMedGoogle Scholar
  27. Falconieri Erspamer G, Nakajima T, Yasuhara T (1979) Pharmacological data on criniaangiotensin II. J Pharm Pharmacol 31: 720Google Scholar
  28. Famaey JP, Fontaine J, Seaman I, Reuse J (1978) Inhibition of angiotensin-induced contractions of guinea pig isolated ileum by high concentrations of non-steroidal antiinflammatory drugs and various steroids and its reversal by prostaglandin El. Prostaglandins 16: 725–732Google Scholar
  29. Fishlock DJ, Gunn A (1970) The action of angiotensin on the human colon “in vitro.” Br J Pharmacol 39: 34–39PubMedGoogle Scholar
  30. Gagnon DJ, Sirois P (1972) The rat isolated colon as a specific assay organ for angiotensin. Br J Pharmacol 46: 89–93PubMedGoogle Scholar
  31. Gavras H, Gavras I, Brunner HR, Liang CS (1978) Physiologic studies with saralasin in animals. Kidney Int 15: 5–20Google Scholar
  32. Godfraind T, Kaba A, Polster P (1966a) Specific antagonism to the direct and indirect action of angiotensin on isolated guinea-pig ileum. Br J Pharmacol 28: 93–104Google Scholar
  33. Godfraind T, Kaba A, Polster P (1966b) Dissociation in two contractile components on the isolated guinea-pig ileum response to angiotensin. Arch Int Pharmacodyn Ther 163: 227–229PubMedGoogle Scholar
  34. Haulica I, Stanciu CW, Frasin M, Cijevschi C, Balan G, Pancu D (1980) Effects of angiotensin on the human lower esophageal sphincter. Abstr XI Int Congr Gastroenterol. Thieme, Stuttgart, p 28Google Scholar
  35. Huidobro HV, Paladini AC (1963) Potentiation of angiotensin action on smooth muscle by alkaline pH. Experientia 19: 572PubMedGoogle Scholar
  36. Khairallah PA, Page IH (1961) Mechanism of action of angiotensin and bradykinin on smooth muscle in situ. Am J Physiol 200: 51–54Google Scholar
  37. Khairallah PA, Page IH (1963) Effect of bradykinin and angiotensin on smooth muscle. Ann NY Acad Sci 104: 212–220PubMedGoogle Scholar
  38. Khairallah PA, Vandaparampil GJ, Page IH (1965) Effect of ions on angiotensin interaction with smooth muscle. Arch Int Pharmacodyn Ther 158: 155PubMedGoogle Scholar
  39. Khosla MC, Smeby RR, Bumpus FM (1974) Structure-activity relationship in angiotensin II analogs. In: Page IH, Bumpus FM (eds) Angiotensin. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 37, pp 126–161 )Google Scholar
  40. Levens NR, Munday KA, York B (1975) Effect of angiotensin II on fluid transport, trans-mural potential difference, and resistance in the rat distal colon in vivo. J Endocrinol 67: 64P-65 PPubMedGoogle Scholar
  41. Lewis GP, Reit E (1965) The action of angiotensin and bradykinin on the superior cervical ganglion of the cat. J Physiol (Lond) 179: 538Google Scholar
  42. Mukhopadhyay AK, Leavitt L (1978) Evidence for an angiotensin receptor in esophageal smooth muscle of the opossum. Am J Physiol 235: E738–E742PubMedGoogle Scholar
  43. Peach MJ (1979) Structural features of angiotensin II which are important for biological activity. Kidney Int 15: 53–56Google Scholar
  44. Pogglitsch H, Holzer H (1971) Die Bestimmung von Angiotensin am isolierten Rattencolon. Wien Klin Wochenschr 83: 894–898PubMedGoogle Scholar
  45. Regoli D, Vane JR (1964) A sensitive method for the assay of angiotensin. Br J Pharmacol 23: 351–359Google Scholar
  46. Regoli D, Park WK, Rioux F (1974a) Pharmacology of angiotensin. Pharmacol Rev 25: 69–123Google Scholar
  47. Regoli D, Rioux F, Park WK, Choi C (1974b) Role of the N-terminal amino acid for the biological activities of angiotensin and inhibitory analogues. Can J Physiol Pharmacol 52: 39–60PubMedGoogle Scholar
  48. Robertson PA, Rubin D (1962) Stimulation of intestinal nervous elements by angiotensin. Br J Pharmacol 19: 5–12Google Scholar
  49. Schwarz H, Bumpus FM, Page IH (1957) Synthesis of a biologically active octapeptide simi-lar to natural isoleucine angiotonin octapeptide. J Am Chem Soc 79: 5697–5703Google Scholar
  50. Schwyzer R, Riniker B, Iselin B, Rittel W, Kapperler H, Zuber H (1958) Val-Hypertensin I and II. Chimia 12: 91Google Scholar
  51. Shehadeh Z, Price WE, Jacobson ED (1969) Effect of vasoactive agents on intestinal blood flow and motility in the dog. Am J Physiol 216: 386–392PubMedGoogle Scholar
  52. Skeggs LT, Marsh WJ, Kahn JR, Shumway NP (1954) The existence of two forms of hypertensin. J Exp Med 99: 275–283PubMedGoogle Scholar
  53. Skeggs LT, Marsh WH, Kahn JR, Shumway NP (1955) Amino acid composition and electrophoretic properties of hypertensin I. J Exp Med 102: 435–440PubMedGoogle Scholar
  54. Skeggs LT, Lentz KE, Shumway NP, Woods KR (1956) The amino acid sequence of hypertensin II. J Exp Med 104: 193–197PubMedGoogle Scholar
  55. Trendelenburg U (1966) Observations on the ganglion-stimulating action of angiotensin and bradykinin. J Pharmacol Exp Ther 154: 418–425PubMedGoogle Scholar
  56. Türker RK (1969) Possible postganglionic adrenergic effect of angiotensin in the isolated perfused cat intestinal segment. Arch Int Physiol Biochim 77: 587–596PubMedGoogle Scholar
  57. Türker RK (1973) Effect of angiotensin on the response to norepinephrine and periarterial stimulation of the isolated perfused cat terminal ileum. Eur J Pharmacol 21: 171–177PubMedGoogle Scholar
  58. Türker RK, Ercan ZS (1978) A comparative study with angiotensin II and ( Des-aspartic acid)’-angiotensin II in the anaesthetized cats. Res Commun Chem Pathol Pharmacol 21: 15–24Google Scholar
  59. Türker RK, Kayaalp SO (1967) Inhibitory effect of angiotensin on intestinal motility of the cat and its relation to sympathetic nervous system. Arch Int Physiol Biochim 75: 735–744PubMedGoogle Scholar
  60. Türker RK, Kaymakcalan S (1971) Effect of morphine and nalorphine on the intestinal mo-tility of the cat. Arch Int Pharmacodyn Ther 193: 397–404PubMedGoogle Scholar
  61. Türker RK, Yamamoto M, Khairallah PA, Bumpus FM (1971) Competitive antagonism of 8-Ala-angiotensin II to angiotensin I and II on isolated rabbit aorta and rat ascending colon. Eur J Pharmacol 15: 285–291PubMedGoogle Scholar
  62. Türker RK, Yamamoto M, Bumpus FM (1973) A new short-acting antagonist of angiotensin II. Arch Int Pharmacodyn Ther 201: 162–169PubMedGoogle Scholar
  63. Vane JR (1974) The fate of angiotensin I. In: Page IH, Bumpus FM (eds) Angiotensin. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 37, pp 17–40 )Google Scholar
  64. Zetler G (1979) Antagonism of cholecystokinin-like peptides by opioid peptides, morphine or tetrodotoxin. Eur J Pharmacol 60: 67–77PubMedGoogle Scholar
  65. Aarsen PN (1977) The effects of bradykinin and the bradykinin potentiating peptide BPPSa on the electrical and mechanical responses of the guinea pig taenia coli. Br J Pharmacol 61: 523–532PubMedGoogle Scholar
  66. Aarsen PN, Van Caspel-De Bruyn M (1970) Effect of changes in ionic environment on the action of bradykinin on the guinea-pig taenia coli. Eur J Pharmacol 12: 348–358Google Scholar
  67. Anastasi A, Bertaccini G, Erspamer V (1966a) Pharmacological data on phyllokinin (bra-dykinyl-isoleucyl-tyrosine 0-sulphate) and bradykinyl-isoleucyl-tyrosine. Br J Pharma-col 27: 479–485Google Scholar
  68. Anastasi A, Ersparmer V, Bertaccini G, Cei GM (1966b) Isolation, amino acid sequence, and biological activity of phyllokinin (bradykinyl-isoleucyl-tyrosine 0-sulphate), a bradykinin-like endecapeptide of the skin of Phyllomedusa rohdei. In: Erdös EG, Back N, Sicuteri F (eds) Hypotensive peptides. Springer, Berlin Heidelberg New York, pp 76–84Google Scholar
  69. Antonio A (1968) The relaxing effect of bradykinin on intestinal smooth muscle. Br J Pharmacol 32: 78–86Google Scholar
  70. Barabé J, Park WK, Regoli D (1975) Application of drug receptor theories to the analysis of the myotropic effects of bradykinin. Can J Physiol Pharmacol 53: 345–353PubMedGoogle Scholar
  71. Barabé J, Drouin JN, Regoli D, Park WK (1977) Receptors for bradykinin in intestinal and uterine smooth muscle. Can J Physiol Pharmacol 55: 1270–1285Google Scholar
  72. Bauer G, Gmeiner R, Winkler H (1966a) Über die Wirkung synthetischer Polypeptide auf den Darm in situ. Arch Int Pharmacodyn Ther 159: 373–385PubMedGoogle Scholar
  73. Bauer G, Ziegler E, Konzett H (1966b) Zur Hemmwirkung von Kininen an isolierten Darmpräparaten. Naunyn Schmiedebergs Arch Pharmacol 254: 235–244Google Scholar
  74. Beleslin DB, Bogdanovié SB, Radmanovic BZ (1964) The possible site of action of bradykinin on the peristaltic reflex of the isolated guinea pig ileum. Arch Int Pharmacodyn Ther 147: 43–52PubMedGoogle Scholar
  75. Bertaccini G (1976) Active polypeptides of nonmammalian origin. Pharmacol Rev 28: 127177Google Scholar
  76. Bertaccini G, Cei GM, Erspamer V (1965) Occurrence of physalaemin in extract of the skin in Physalaemus fuscumaculatus and its pharmacological actions on extravascular smooth muscle. Br J Pharmacol 25: 363–379Google Scholar
  77. Bertaccini G, Mantovani P, Piccinin GL (1970) Activity ratio between intestinal and cardiovascular actions of caerulein and related substances in the anaesthetized dog. In: Sicuteri F, Rocha e Silva M, Back N (eds) Bradykinin and related kinins. Plenum, New York London, pp 213–220Google Scholar
  78. Bertaccini G, Impicciatore M, Molina E, Zappia L (1974) Action of bombesin on human gastrointestinal motility. Rend Gastroenterol 6: 45–51Google Scholar
  79. Bertaccini G, Zappia L, Molina E (1979) “In vitro” duodenal muscle in the pharmacological study of natural compounds. Scand J Gastroenterol [Suppl 54] 14:87–93Google Scholar
  80. Bisset GW, Lewis GP (1962) A spectrum of pharmacological activity in some biologically active peptides. Br J Pharmacol 19: 168–182Google Scholar
  81. Bogdanik T, Straczkowski W, Stasiewicz J, Szalaj W (1971) The influence of alfa and betaadrenergic blockade on the duodenal motility; effects of calcium and magnesium ions and bradykinin. In: Union Intern. Thérapeutique (ed) X` Congrès international de thérapeutique. Paris 2–4 Octobre 1969. Doin, Paris, pp 407–415Google Scholar
  82. Bonta IL, Hall DWR (1973) Potentiation of the biphasic bradykinin response of the guinea-pig ileum. Br J Pharmacol 49: 161P-162 PPubMedGoogle Scholar
  83. Camargo A, Ferreira SH (1971) Action of bradykinin potentiating factor (BPF) and dimercaprol ( BAL) on the response to bradykinin of isolated preparations of rat intestines. Br J Pharmacol 42: 305–307Google Scholar
  84. Coruzzi G, Bertaccini G (1980) Action of some vasoactive peptides on the isolated lower esophageal sphincter. Pharmacol Res Commun 12: 965–973PubMedGoogle Scholar
  85. Crocker AD, WalkerR, Wilson KA (1978) Prostaglandins and the contractile action of bra-dykinin on the longitudinal muscle of the rat isolated ileum. Br J Pharmacol 64: 441 PGoogle Scholar
  86. Crocker AD, Willavoys SP (1976) Possible involvement of prostaglandins in the contractile action of bradykinin on rat terminal ileum. J Pharm Pharmacol 28: 78PubMedGoogle Scholar
  87. Drouin JN, St-Pierre SA, Regoli D (1979a) Receptors for bradykinin and kallidin. Can J Physiol Pharmacol 57: 375–379PubMedGoogle Scholar
  88. Drouin JN, Gaudreau P, St-Pierre S, Regoli D (1979b) Biological activities of kinins modi-fied at the N- or at the C-terminal end. Can J Physiol Pharmacol 57: 1018–1023PubMedGoogle Scholar
  89. Erdös EG (ed) (1970) Handbook of experimental pharmacology, vol XXV: Bradykinin, kal-lidin, and kallikrein. Springer, Berlin Heidelberg New YorkGoogle Scholar
  90. Erdös EG (ed) (1979) Handbook of experimental pharmacology, vol XXV Suppl: Bradykinin, kallidin, and kallikrein. Springer, Berlin Heidelberg New YorkGoogle Scholar
  91. Erspamer V, Anastasi A (1966) Polypeptides active on plain muscle in the amphibian skin. In: Erdös EG, Back N, Sicuteri F (eds) Hypotensive peptides. Springer, Berlin Heidelberg New York, pp 63–75Google Scholar
  92. Fasth S, Hultén L (1973) The effect of bradykinin on intestinal motility and blood flow. Acta Chir Scand 139: 699–705PubMedGoogle Scholar
  93. Fasth S, Hultén L, Jahnberg T, Martinson J (1975) Comparative studies on the effects of bradykinin and vagal stimulation on motility in the stomach and colon. Acta Physiol Scand 93: 77–84PubMedGoogle Scholar
  94. Fishlock J (1966) Effect of bradykinin on the human isolated small and large intestine. Nature 212: 1533–1535PubMedGoogle Scholar
  95. Gaddum JH, Horton EW (1959) The extraction of human urinary kinin (substance Z) and its relation to the plasma kinins. Br J Pharmacol 14: 117–124Google Scholar
  96. Garcia Leme J, Rocha e Silva M (1965) Competitive and non-competitive inhibition of bradykinin on the guinea pig ileum. Br J Pharmacol 25: 50–58Google Scholar
  97. Gladner JA (1966) Potentiation of the effect of bradykinin. In: Erdös EG, Back N, Sicuteri F (eds) Hypotensive peptides. Springer, Berlin Heidelberg New York, p 344Google Scholar
  98. Gray GW, Yano BL (1975) A study of the actions of methampyrone and of a commercial intestinal extract preparation on intestinal motility. Am J Vet Res 36: 201–208Google Scholar
  99. Hall DWR, Bonta IL (1972) Neurogenic factors involved in the relaxing effect of bradykinin on the isolated guinea-pig ileum. Arch Int Pharmacodyn Ther 197: 380–381PubMedGoogle Scholar
  100. Hall DWR, Bonta IL (1973a) Effects of adrenergic blockers on the relaxation of the guinea pig ileum by bradykinin and adrenaline. Eur J Pharmacol 21: 139–146PubMedGoogle Scholar
  101. Hall DWR, Bonta IL (1973b) The biphasic response of the isolated guinea pig ileum by bradykinin. Eur J Pharmacol 21: 147–154PubMedGoogle Scholar
  102. Hardcastle J, Hardcastle PT, Flower RJ, Sanford PA (1978) The effect of bradykinin on the electrical activity of rat jejunum. Experientia 34: 617–618PubMedGoogle Scholar
  103. Hiatt RB, Goodman I, Bircher R (1966) Control of motility in thiry-vella ileal segments in dogs. Am J Physiol 210: 373–378PubMedGoogle Scholar
  104. Horton EW (1959) Human urinary kinin excretion. Br J Pharmacol 14: 125–132Google Scholar
  105. Iso T, Nishimura K, Oya M, Iwao JI (1979) Potentiating mechanism of bradykinin action on smooth muscle by sulphydryl compounds. Eur J Pharmacol 54: 303–305PubMedGoogle Scholar
  106. Johnson AR (1979) Effects of kinins on organ systems. In: Erdös EG (ed) Bradykinin, kallidin, and kallikrein. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol XXV Suppl., pp 357–399 )Google Scholar
  107. Konzett H, Stürmer E (1960) Biological activity of synthetic polypeptides with bradykininlike properties. Br J Pharmacol 15: 544–551Google Scholar
  108. Levy B (1963) The intestinal inhibitory response to oxytocin, vasopressin, and bradykinin. J Pharmacol Exp Ther 140: 356–366PubMedGoogle Scholar
  109. Ludâny G, Ihâsz M, Karika J (1967) Bradykinin and motility of the intestinal villi. Med Pharmacol Exp 17: 311–314Google Scholar
  110. Mantovani P, Bertaccini G (1971) Action of caerulein and related substances on gastroin-testinal motility of the anesthetized dog. Arch Int Pharmacodyn Ther 193: 362–371PubMedGoogle Scholar
  111. Mantovani P, Vizi ES (1974) Further observations on the relaxant effect of caerulein on the guinea-pig ileum. J Pharm Pharmacol 26: 461–462PubMedGoogle Scholar
  112. Montgomery EH (1968) The response of the rat duodenum to bradykinin. Proc West Pharmacol Soc 11: 51–52PubMedGoogle Scholar
  113. Murrell TGC, Deller DJ (1967) Intestinal motility in man: the effect of bradykinin on the motility of the distal colon. Dig Dis Sci 12: 568–576Google Scholar
  114. Nakajima T, Yasuhara T, Falconieri Erspamer G, Visser J (1979) Occurrence of Hyp3-bradykinin in methanol extracts of the skin of the South African leptodactylid frog Heleophrine purcelli. Experientia 35: 1133PubMedGoogle Scholar
  115. Oates JA, Melmon K, Sjoerdsma A, Gillespie L, Mason DT (1964) Release of a kinin peptide in the carcinoid syndrome. Lancet 1: 514–517PubMedGoogle Scholar
  116. Odya CE, Goodfriend TL (1979) Bradykinin receptors. In: Erdös EG (ed) Bradykinin, kallidin, and kallikrein. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol XXV Suppl, pp 287–300 )Google Scholar
  117. Paegelow I, Reissmann S, Vietinghoff G, Römer W, Arold H (1977) Bradykinin action in the rat duodenum through the cyclic AMP system. Agents Actions 7 /4: 447–451PubMedGoogle Scholar
  118. Picarelli ZP (1962) Kininases. Ciencia Cult (Sao Paulo), 14: 232–236Google Scholar
  119. Pisano JJ (1968) Vasoactive peptides in venoms. Fed Proc 27: 58–62PubMedGoogle Scholar
  120. Potter DE, Walaszek EJ (1972) Potentiation of the bradykinin response by cysteine: mechanism of action. Arch Int Pharmacodyn Ther 197: 338–349PubMedGoogle Scholar
  121. Pytkowski B (1979) On the contribution of prostaglandin-like substances to the action of bradykinin on intestinal motility and blood flow in canine jejunal loop in situ. Eur J Clin Invest 9: 391–396PubMedGoogle Scholar
  122. Rocha e Silva M (1972) The kinin trail. Possible significance of bradykinin and related kinins to auto-pharmacology. In: Abstr Fifth Int Congr Pharmacol, San Francisco, p 21Google Scholar
  123. Rocha e Silva M, Rothschild HA (1974) A bradykinin anthology. Sociedade Brasileira de Farmacologia e Terape’utica Experimental, Sao Paulo, pp 1–335Google Scholar
  124. Rocha e Silva M, Beraldo WT, Rosenfeld G (1949) Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiol 156: 261–273Google Scholar
  125. Sabia EB, Tominaga M, Paiva ACM, Paiva TB (1977) Bradykinin potentiating and sensitizing activities of new synthetic analogues of snake venom peptides. J Med Chem 20: 1679–1681PubMedGoogle Scholar
  126. Schröder E (1970) Structure-activity relationships of kinins In• Erdös EG (ed) Bradykinin, kallidin, and kallikrein. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol XXV, pp 324–350 )Google Scholar
  127. Shehadeh Z, Price WE, Jacobson ED (1969) Effects of vasoactive agents on intestinal blood flow and motility in the dog. Am J Physiol 216: 386–392PubMedGoogle Scholar
  128. Sherman WT, Gautieri RF (1969) Cardiovascular and gastrointestinal effect of bradykinin and its potentiation by thiols in rats. J Pharm Sci 58: 971–975PubMedGoogle Scholar
  129. Stewart JM (1979) Chemistry and biologic activity of peptides related to bradykinin. In: Erdös EG (ed) Bradykinin, kallidin, and kallikrein. Springer, Berlin Heidelberg New York ( Handbook of experimental pharmacology vol XXV, Suppl, pp 227–272 )Google Scholar
  130. Stürmer E, Berde B (1963) A comparative pharmacological study of synthetic eledoisin and synthetic bradykinin. J Pharmacol Exp Ter 140: 349–355Google Scholar
  131. Tominaga M, Stewart JM, Paiva TB, Paiva ACM (1975) Synthesis and properties of new bradykinin potentiating peptides. J Med Chem 18: 130–133PubMedGoogle Scholar
  132. Türker RK, Ozer A (1970) The effect of prostaglandin E1 and bradykinin on normal and depolarized isolated duodenum of the rat. Agents Actions 1: 124–127PubMedGoogle Scholar
  133. Türker K, Kiran BK, Kaymakcalan S (1964) The effects of synthetic bradykinin on intestinal motility in different laboratory animals and its relation to catecholamines. Arch Int Pharmacodyn Ther 151: 260–268Google Scholar
  134. Ufkes JGR, Van Der Meer C (1975) The effect of catecholamine depletion on the bradyki- nin-induced relaxation of isolated smooth muscle. Eur J Pharmacol 33: 141–144PubMedGoogle Scholar
  135. Ufkes JGR, Aarsen PN, Van Der Meer C (1976) The bradykinin potentiating activity of two pentapeptides on various isolated smooth muscle preparations. Eur J Pharmacol 40: 137–144PubMedGoogle Scholar
  136. Ufkes JGR, Aarsen PN, Van Der Meer C (1977) The mechanism of action of two brady-kinin-potentiating peptides on isolated smooth muscle. Eur J Pharmacol 44: 89–97PubMedGoogle Scholar
  137. Vane JR (1964) The use of isolated organs for detecting active substances in the circulating blood. Br J Pharmacol 23: 360–373Google Scholar
  138. Van Riezen H (1966) Methixene: a non-competitive antagonist of bradykinin. J Pharm Pharmacol 18: 688PubMedGoogle Scholar
  139. Veenendal GH, Van Miert AS, Van Den Ingh TS, Scotman AJ, Zwart D (1976) A comparison of the role of kinins and serotonin in endotoxin induced fever and Trypanosoma vivax infections in the goat. Res Vet Sci 21: 271–279Google Scholar
  140. Veenendaal GH, Woutersen Van Nijnanten FMA, Van Miert ASJPAM (1980) Responses of goat ruminal musculature to bradykinin and serotonin in vitro and in vivo. Am J Vet Res 41: 479–483PubMedGoogle Scholar
  141. Von Klupp H, Konzett H, Winkler H (1964) Zur Wirkung von Bradykinin auf die Darmmotilität in situ. Arch Exp Pathol Pharmakol 247: 325–326Google Scholar
  142. Walker R, Wilson KA (1979) Prostaglandins and the contractile action of bradykinin on the longitudinal muscle of rat isolated ileum. Br J Pharmacol 67: 527–533PubMedGoogle Scholar
  143. Weinberg J, Diniz CR, Mares-Guia M (1976) Influence of sex and sexual hormones in the bradykinin-receptor interaction in the guinea pig ileum. Biochem Pharmacol 25: 433–437PubMedGoogle Scholar
  144. Winkler H, Bauer G, Gmeiner R (1965) Zur Wirkung von Bradykinin, Kallidin und Eledoisin auf den Katzen-und Kaninchen-Darm in situ. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 250: 459–468Google Scholar
  145. Zappia L, Molina E, Violini A, Bassani F (1972) Ricerche preliminari sull’azione del nuovo polipeptide bombesina sull’appendice umana „in vitro“. Ateneo Parmense [Acta Biomed] 43: 3–8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

There are no affiliations available

Personalised recommendations