Peptides: Other Hormones

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 59 / 2)


The hypothalamus of most vertebrate species secretes two main peptides whose activities, though overlapping, fall into two different categories: pressor and uterine-contracting substances. In addition some gastrointestinal motor effects have been described and they will be reported here.


Irritable Bowel Syndrome Lower Esophageal Sphincter Proximal Colon Gastrointestinal Motility Pyloric Sphincter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer G, Gmeiner R, Winkler H (1966) Über die Wirkung synthetischer Polypeptide auf den Darm in situ. Arch Int Pharmacodyn Ther 159: 373–385PubMedGoogle Scholar
  2. Boesby S, Pedersen SA (1974) The effect of vasopressin on resting gastroesophageal sphincter pressure in man. Scand J Gastroenterol 9: 587–590PubMedGoogle Scholar
  3. Botting JH (1965) An isolated preparation with a selective sensitivity to vasopressin. Br J Pharmacol 24: 156–162Google Scholar
  4. Botting JH, Turmer AD (1966) Mode of action of vasopressin on isolated proximal colon of the guinea pig. Br J Pharmacol 28: 197–206Google Scholar
  5. Botting JH, Turmer AD (1969) Studies on the mode of action of vasopressin on the isolated proximal colon of the guinea pig. Br J Pharmacol 37: 306–313PubMedGoogle Scholar
  6. Brazeau P (1975) Agents affecting the renal conservation of water. In: Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics. Macmillan, New York, pp 848–859Google Scholar
  7. Chauvet MT, Hurpet D, Chauvet J, Acher A (1980) Phenypressin (Phe2-Arg8-vasopressin), a new neurohypophysial peptide found in marsupials. Nature 287: 640–642PubMedCrossRefGoogle Scholar
  8. Collins E, Root J (1936) Elimination of confusing gas shadow during cholecystography by the use of pitressin. JAMA 107: 32–35CrossRefGoogle Scholar
  9. Coruzzi G, Bertaccini G (1980) Effect of some vasoactive peptides on the lower esophageal sphincter. Pharm Res Commun 12: 965–973CrossRefGoogle Scholar
  10. Du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG, Gordon S (1953) The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J Am Chem Soc. 75: 4879–4880CrossRefGoogle Scholar
  11. Du Vigneaud V, Gish DT, Katsoyannis PG (1954) A synthetic preparation possessing biological properties associated with arginine-vasopressin. J Am Chem Soc 76: 4751–4752CrossRefGoogle Scholar
  12. Erspamer V, Falconieri Erspamer G, Inselvini M, Negri L (1972) Occurrence of bombesin and alytesin in extracts of the skin of three European discoglossid frog and pharmacological actions of bombesin on extravascular smooth muscle. Br J Pharmacol 45: 333–348PubMedGoogle Scholar
  13. Forssman O, Leczinski CG, Mulder J (1973) Synthetic lysine-vasopressin in herpetic neuralgia. Acta Derm Venereol (Stockh) 53: 359–362Google Scholar
  14. Gilmore NJ, Vane JR (1970) A sensitive and specific assay for vasopressin in the circulating blood. Br J Pharmacol 38: 633–652Google Scholar
  15. Göthlin J (1972a) Use of vasopressin to eliminate intestinal gas during abdominal roentgenography. Forsk Praktik 4: 30–35Google Scholar
  16. Göthlin J (1972b) Vasopressin in the elimination of intestinal gas. Acta Radiol Diagn 12: 100–112Google Scholar
  17. Hiatt RB, Goodman I, Bircher R (1966) Control of motility in Thiry-Vella ileal segments in dogs. Am J Physiol 210: 373–378PubMedGoogle Scholar
  18. Jutras A, Cantero A (1936) Le pitressin, hormone antipneumatosique, son emploi dans le radiodiagnostic abdominal. J Radiol 20: 443–445Google Scholar
  19. Kowalewski K, Kolodej A (1976) The effect of pitressin on secretion, motor activity and blood circulation of the totally isolated canine stomach perfused extracorporeally. Rend Gastroenterol 8: 76–82Google Scholar
  20. Le Goff P, Thouvenot J (1970) Action de la lysine-vasopressine sur l’activité motrice du co-lon proximal. Etude in vitro chez le rat. C R Soc Biol (Paris) 164: 2091–2093Google Scholar
  21. Levy B (1963) The intestinal inhibitory response to oxytocin, vasopressin, and bradykinin. J Pharmacol Exp Ther 140: 356–366PubMedGoogle Scholar
  22. Paul L, Beatty S (1937) The use of pitressin for the elimination of intestinal gas in roent-genography of the genito-urinary tract and gallbladder. Am J Roentgenol 38: 776–779Google Scholar
  23. Pessoa JM, Souza R (1978) Effect of drugs on motility of the ruminoreticulum of sheep. III. Oxytocin. Arq Esc Vet Univ Fed Minas Gerais 30: 257–259Google Scholar
  24. Scheibel O (1936) Concerning pitressin in roentgen examination of the abdomen as an agent for reducing shadow caused by intestinal gas. Acta Radiol 17: 511–515CrossRefGoogle Scholar
  25. Schuurkes JA, Charbon GA (1978) Motility and hemodynamics of the canine gastrointestinal tract. Stimulation by pentagastrin, cholecystokinin, and vasopressin. Arch Int Pharmacodyn Ther 236: 214–227Google Scholar
  26. Vaughan Williams EM, Streeten DHP (1952) The action of posterior pituitary extracts upon propulsion in the small intestine of conscious dogs. Br J Pharmacol 7: 47–57Google Scholar
  27. Woo CY, Somlyo AP (1967) Interaction of magnesium with vasopressin in intestinalGoogle Scholar
  28. Bobalik GR, Kleszynski RR, Aldred JP, Bastian JW (1974) Differential effects of salmon, porcine, and human calcitonin on gastric secretion and gastric emptying in rats. Proc Soc Exp Biol Med 147: 284–288PubMedGoogle Scholar
  29. Copp HD (1964) Parathyroids, calcitonin, and control of plasma calcium. Recent Prog Horm Res 20: 59–88PubMedGoogle Scholar
  30. Danielides IC, Mellow MH (1978) Effect of acute hypercalcemia on human esophageal motility. Gastroenterology 75: 1115–1119PubMedGoogle Scholar
  31. Debat J, Couturier D, Roze C, Debray C (1976) Effects of thyrocalcitonin on pentagastrin induced contraction of the lower esophageal sphincter in normal and in patients with achalasia. Gastroenterology 70: 876Google Scholar
  32. Dreyfus CF, Gershon MD, Haymovits A, Nunez E (1976) Calcitonin: antagonism at intestinal muscarinic receptors. Br J Pharmacol 57: 155–157PubMedGoogle Scholar
  33. Foster GB, Baghdiantz A, Kumar MA, Slack E, Soliman HA, Maclntyre I (1964) Thyroid origin of calcitonin. Nature 202: 1303–1305PubMedCrossRefGoogle Scholar
  34. Lebedev NN, Briskin AI (1975) The effect of thyrocalcitonin on the periodic motor activity of the gastrointestinal tract. Byul Eksp Biol Med 80: 10–12Google Scholar
  35. Nakhla AM, Latif A (1978) A possible role for 5-hydroxytryptamine as mediator for calcitonin actions on the gastrointestinal tract and pancreas in rats. Biochem J Cell Aspects 176: 339–342Google Scholar
  36. Segerstrom A (1973a) Effect of parathyroid hormone on the propulsive gastrointestinal motility of the rat. Acta Chir Scand 139: 55–59PubMedGoogle Scholar
  37. Segerstrom A (1973b) Thyrocalcitonin and gastrointestinal propulsive motility: an experimental study in the rat. Acta Chir Scand 139: 180–183PubMedGoogle Scholar
  38. Waldeck F, Siewert R, Jennewein HM, Weiser F (1973) Das Druckprofil im unteren Ösophagussphinkter beim Menschen und seine Beeinflussung durch Gastrin, Calcitonin und Glucagon. Dtsch Med Wochenschr 98: 1059–1063Google Scholar
  39. Walling MW, Brasitus TA, Kimberg DU (1977) Effects of calcitonin and substance P on the transport of Ca, Na and Cl across rat ileum in vitro. Gastroenterology 73: 89–94Google Scholar
  40. Dauchel J, Schang JC, Pousse A, Hiatt RB, Grenier JF (1975) Electromyographic study of the effects of coherin, a posterior pituitary extract, on the intestinal motility in man. In: Vantrappen G (ed) Fifth International Symposium on Gastrointestinal Motility. Typoff, Herentals, pp 88–94Google Scholar
  41. Goodman I, Hiatt RB (1972) Coherin: a new peptide of the bovine neurohypophysis with activity on gastrointestinal motility. Science 178: 419–421PubMedCrossRefGoogle Scholar
  42. Hiatt RB, Goodman I (1976) Peptide treatment of postgastrectomy obstruction. Arch Surg 111: 997–999PubMedCrossRefGoogle Scholar
  43. Hiatt RB, Goodman I (1979) The physiologic properties and therapeutic potential of coherin. Am J Surg 137: 82–86PubMedCrossRefGoogle Scholar
  44. Hiatt RB, Grenier J, Mendel C, Goodman I (1974) Action of coherin on the basic electrical rhythm and propagation in the isolated perfused canine jejunum. In: Daniel EE (ed) Fourth International Symposium on Gastrointestinal Motility. Mitchell, Vancouver, pp 61–62Google Scholar
  45. Hiatt RB, Goodman I, Sandler B, Cheskin H (1977) The effect of coherin on the basic electrical rhythm of the dog ileum “in vivo.” Am J Dig Dis 22: 108–112PubMedCrossRefGoogle Scholar
  46. Mendel C, Jaeck D, Grenier JF, Hiatt RB, Goodman I, Sandler B (1975) Action of coherin on the basic electrical rhythm and propagation in the isolated perfused canine jejunum. J Surg Res 19: 403–409PubMedCrossRefGoogle Scholar
  47. Snape WJ Jr, Sullivan MA, Cohen S (1978) The effect of coherin on colonic myoelectrical activity in the irritable bowel syndrome. Gastroenterology 74: 1097Google Scholar
  48. Bertaccini G, Coruzzi G, Zappia L (1979) Azione del TRH sulla motilità gastrointestinale „in vitro.“ Ateneo Parmense [Acta Biomed] 50: 149–152Google Scholar
  49. Bowers CY, Schally AV, Enzmann F, Boler J, Folkers K (1970) Porcine thyrotropin-releasing hormone is (pyro)glu-his-pro(NH2). Endocrinology 86: 1143–1153PubMedCrossRefGoogle Scholar
  50. Bruce LA, Behsudi FM, Fawcett CP (1977) The effect of TRH on gastrointestinal smooth muscle in vitro. IRCS Med Sci 5: 469Google Scholar
  51. Bruce LA, Behsudi FM, Fawcett CP (1979) Histaminergic involvement in thyrotropin-re-leasing hormone stimulation of antral tissue in the rat. Gastroenterology 76: 908–912PubMedGoogle Scholar
  52. Carlson HE, Hershman JM (1975) The hypothalamic-pituitary-thyroid axis. Med Clin North Am 59: 1045–1053PubMedGoogle Scholar
  53. Dolva LO, Stadaas JO (1979) Action of thyrotropin-releasing hormone on gastrointestinal functions in man. III. Inhibition of gastric motility in response to distension. Scand J Gastroenterol 14: 419–423Google Scholar
  54. Dolva L(, Hanssen KF, Stadaas J, Berstad A (1978) Thyrotropin releasing hormone inhibits the pentagastrin stimulated gastric secretion and gastric motility in man. Scand J Gastroenterol [Suppl 49] 13: 49CrossRefGoogle Scholar
  55. Dolva LO, Hanssen KF, Berstad A (1979a) Actions of thyrotropin-releasing hormone on the gastrointestinal function in man. Scand J Gastroenterol 14: 33–34PubMedCrossRefGoogle Scholar
  56. Dolva LO, Hanssen KF, Berstad A, Frey HMM (1979b) Thyrotropin-releasing hormone inhibits the pentagastrin stimulated gastric secretion in man. A dose-response study. Clin Endocrinol 10: 281–286Google Scholar
  57. Erspamer V (1978) Correlation between active peptides of the amphibian skin and peptides of the avian and mammalian gut and brain. The gut-brain-skin triangle. In: Abstr 19th Congr Ital Pharmacol Soc. Grafiche Bellomo, Ancona, pp 109–156Google Scholar
  58. Furukawa K, Nomoto T, Tonoue T (1980) Effects of thyrotropin-releasing hormone ( TRH) on the isolated small intestine and taenia coli of the guinea pig. Eur J Pharmacol 64: 279287Google Scholar
  59. Jackson I, Reichlin S (1974) Thyrotropin-releasing hormone (TRH): distribution in the brain, blood, and urine of the rat. Life Sci 14: 2259–2266PubMedCrossRefGoogle Scholar
  60. Jackson I, Reichlin S (1977) Thyrotropin-releasing hormone: abundance in the skin of the frog, Rana pipiens, Science 198: 414–415Google Scholar
  61. La Hann TR (1978) Studies on the gastrointestinal motor activity evoked by central administration of thyrotropin-releasing hormone. PhD dissertation, University of Washington. Abstr Int B38, 4182Google Scholar
  62. La Hann TR, Horita A (1977) Thyrotropin-releasing hormone and the gastrointestinal tract: the effect of central administration on colonic smooth muscle activity. Proc West Pharmacol Soc 20: 305–306Google Scholar
  63. Morley JE (1979) Extrahypothalamic thyrotropin-releasing hormone (TRH); its distribution and its functions. Life Sci 25: 1539–1550PubMedCrossRefGoogle Scholar
  64. Morley JE, Garvin TJ, Pekary AE, Hersham JM (1977) Thyrotropin-releasing hormone in the gastrointestinal tract. Biochem Biophys Res Commun 79: 314–318PubMedCrossRefGoogle Scholar
  65. Morley JE, Steinback JH, Feldman EJ, Solomon TE (1979) The effects of thyrotropin-releasing hormone ( TRH) on the gastrointestinal tract. Life Sci 24: 1059–1066Google Scholar
  66. Smith JR, La Hann TR, Chesnut RM, Carino MA, Horita A (1977) Thyrotropin-releasing hormone: stimulation of colonic activity following intracerebroventricular administration. Sciences 196: 660–662CrossRefGoogle Scholar
  67. Tonoue T, Nomoto T (1979) Effect of intracerebroventricular administration of thyrotropin-releasing hormone upon the electroenteromyogram of rat duodenum. Eur J Pharmacol 58: 369–377PubMedCrossRefGoogle Scholar
  68. Tonoue T, Furukawa K, Nomoto T 1979 ) The direct influence of thyrotropin-releasing hor-mone ( TRH) on the smooth muscle of rat duodenum. Life Sci 25: 2011–2016Google Scholar
  69. Yajima H, Kitagawa K, Segawa T, Nakano M, Kataoka K (1975) Occurrence of Pyr-His-Pro-NH2 in the frog skin. Chem Pharm Bull (Tokyo) 23: 3301–3303Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

There are no affiliations available

Personalised recommendations