Repair

State of the Art Report
  • R. L. Barchi
  • H. Bostock
  • L. A. Greene
  • W. I. McDonald
  • I. Parnas
  • R. H. Quarles
  • M. Schachner
  • E. M. Stadlan
Conference paper
Part of the Dahlem Workshop Reports Life Sciences Research Report book series (DAHLEM, volume 20)

Abstract

The concept of repair processes in multiple sclerosis, especially those which relate to neuronal-glial cell interactions, can be considered on several different levels. Eventually it may be possible to document an initial insult in man which leads directly or indirectly to the eventual development of the symptoms of multiple sclerosis. Repair at the most basic level might be directed at elimination of this insult be it caused by viral, humoral, or other factors. It is also probable that secondary immunologic or other host-reactive mechanisms may become established as a result of this initial process which in themselves lead to the persistence of the disease state or to its re-appearance or exacerbation. Repair might be conceived as involving intervention at this point in the train of pathophysiologic events. Eventually the formation of lesions within the substance of the central nervous system leads to the characteristic symptomatic expressions of the disease in man. The concept of repair might be considered to involve the restoration of normal function in the fiber tracts affected by demyelination and axonal loss.

Keywords

Migration Toxicity Polypeptide Bicarbonate Neurol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Blakemore, W.F. 1973. Remyelination of the superior cerebellular peduncle in the mouse following demyelination induced by feeding cuprizone. J. Neurol. Sci. 20: 73–83.PubMedCrossRefGoogle Scholar
  2. (2).
    Blakemore, W.F. 1973. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 226: 68–69.Google Scholar
  3. (3).
    Blakemore, W.F., Eames, R.A., Smith, K.J., and McDonald, W.I. 1977. Remyelination in the spinal cord of the cat following intraspinal injections of lysolecithin. J. Neurol. Sci. 33: 31–43.PubMedCrossRefGoogle Scholar
  4. (4).
    Bostock, H., Hall, S.M., and Smith, K.J. 1980. Demyelinated axons form ‘nodes’ prior to remyelination. J. Physiol. 308: 21–23.Google Scholar
  5. (5).
    Bostock, H., and Sears, T.A. Continuous conduction in demyelinated mammalian nerve fibers. Nature 263: 786–787.Google Scholar
  6. (6).
    Bostock, H., and Sears, T.A. 1978. The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J. Physiol. 280: 273–301.PubMedGoogle Scholar
  7. (7).
    Bostock, H., Sherratt, R.M., and Sears, T.A. 1978. Overcoming conduction failure in demyelinated nerve fibers by prolonging action potentials. Nature 274: 385–387.PubMedCrossRefGoogle Scholar
  8. (8).
    Bunge, M.B., Bunge, R.P., and Ris, H. 1981. Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J. Physiol. Biochem. Cytol. 10: 67–94.CrossRefGoogle Scholar
  9. (9).
    Bunge, R.P., Bunge, M.B., and Ris, H. 1960. Electron microscopic study of demyelination in an experimentally induced lesion in adult cat spinal cord. J. Biophys. Biochem. Cytol. 7: 685–686.PubMedCrossRefGoogle Scholar
  10. (10).
    Davis, F.A., Becker, R.O., Michael, J.A., and Sorensen, E. 1970. Effects of intravenous sodium bicarbonate di- sodium edetate (Na2EDTA), and hyperventilation on visual and oculomotor signs in multiple sclerosis. J. Neurol. Neurosurg. Psychiat. 33: 723–732.PubMedCrossRefGoogle Scholar
  11. (11).
    Fergen, I., and Popoff, N. 1966. Regeneration of myelin in multiple sclerosis. Neurology 16: 364–372.Google Scholar
  12. (12).
    Gledhill, R.F., and McDonald, W.I. 1977. Morphological characteristics of central demyelination and remyelination: a singel fibre study. Ann. Neurol. 1: 552–560.PubMedCrossRefGoogle Scholar
  13. (13).
    Harrison, B.M. 1980. Remyelination by cells introduced into a stable demyelinating lesion in the central hervous system. J. Neurol. Sci. 46: 63–81.PubMedCrossRefGoogle Scholar
  14. (14).
    Harrison, B.M., and McDonald, W.I. 1977. Remyelination after transient experimental compression of the spinal cord. Ann. Neurol. 1: 542–551.PubMedCrossRefGoogle Scholar
  15. (15).
    Harrison, B.M., McDonald, W.I., and Ochoa, J. 1972. Central demyelination produced by diphtheria toxin: an electron microscope study. J. Neurol. Sci. 17: 293–302.PubMedCrossRefGoogle Scholar
  16. (16).
    Harrison, B.M., McDonald, W.I., and Ochoa, J. 1972. Remyelination in the central diphtheria toxin lesion. J. Neurol. Sci. 17: 293–302.PubMedCrossRefGoogle Scholar
  17. (17).
    Herndon, R.M., Price, D.L., and Weiner, L.P. 1977. Regeneration of oligodendroglia during recovery from demyelinating disease. Science 195: 693–694.PubMedCrossRefGoogle Scholar
  18. (18).
    Itoyama, Y., Sternberger, N.H., Quarles, R.H., Cohen, S.R., and Webster, H. de F. 1979. Immunocytochemical observations on demyelinating lesions in experimental allergic encephalomyelitis (EAE). Abstracts, Soc. Neurosci. 5: 512.Google Scholar
  19. (19).
    Itoyama, Y., Sternberger, N.H., Webster, H. de F., Quarles, R.H., Cohen, S.R., and Richardson, E.P. 1980. Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Ann. Neurol. 7: 167–177.PubMedCrossRefGoogle Scholar
  20. (20).
    Itoyama, Y., Trapp, P., McIntyre, L., Sternberger, P., Richardson, E., and Webster, H. de F. 1979. Remyelination of CNS fibers by Schwann cells in multiple sclerosis: immunocytochemical observation. J. Neuropath. Exp. Neurol. 38: 323.CrossRefGoogle Scholar
  21. (21).
    Itoyama, Y., Walker, D.L., Richardson, E.P., Sternberger, N.H., Padgett, P.L., Quarles, R.H., and Webster, H. de F. 1980. Papova virus, myelin-associated glycoprotein and myelin basic protein in progressive multifocal leukoencephalopathy. J. Neuropath. Exp. Neurol. 39: 363.CrossRefGoogle Scholar
  22. (22).
    Koles, Z., and Rasminski, M. 1972. Computer simulation of conduction in demyelinated nerve fibers. 1972. J. Physiol. 227: 351–364.PubMedGoogle Scholar
  23. (23).
    Ludwin, S.K. 1978. Central nervous system demyelination and remyelination in the mouse: An ultrastructural study of cuprizone toxicity. Lab. Invest. 25: 597–612.Google Scholar
  24. (24).
    McDonald, W.I. 1974. Pathophysiology in multiple sclerosis. Brain 97: 179–196.PubMedCrossRefGoogle Scholar
  25. (25).
    McDonald, W.I., and Sears, T.A. 1970. The effects of experimental demyelination on conduction in the central nervous system. Brain 93: 583–598.PubMedCrossRefGoogle Scholar
  26. (26).
    Prineas, J.W., and Connell, F. 1978. The fine structure of chronically active multiple sclerosis plaques. Neurology (Minneap.) 28 (2): 68–75.Google Scholar
  27. (27).
    Prineas, J.W., and Connell, F. 1979. Remyelination in multiple sclerosis. Ann. Neurol. 5: 22–31.PubMedCrossRefGoogle Scholar
  28. (28).
    Raine, C.S., Wisniewski, H., and Prineas, J. 1969. An ultrastructural study of experimental demyelination and remyelination. II. Chronic experimental allergic encephalomyelitis in the peripheral nervous system. Lab. Invest. 21: 316–327.PubMedGoogle Scholar
  29. (29).
    Rasminsky, M. 1973. The effects of temperature on conduction in demyelinated single nerve fibers. Arch. Neurol. Chicago. 28: 287–292.PubMedGoogle Scholar
  30. (30).
    Rasminsky, M., and Sears, T.A. 1972. Internodal conduction in undissected demyelinated fibers. J. Physiol. 227: 323–350.PubMedGoogle Scholar
  31. (31).
    Reier, P.J., and Webster, H. de F. 1974. Regeneration and remyelination of Xenopus tadpole optic nerve fibers following transection or crush. J. Neurocytol. 3: 591–618.PubMedCrossRefGoogle Scholar
  32. (32).
    Schauf, C.L., and Davis, F.A. 1974. Impulse conduction in multiple sclerosis: A theoretical basis for modification by temperature and pharmacological agents. J. Neurol. Neurosurg. Psychiat. 37: 152–161.PubMedCrossRefGoogle Scholar
  33. (33).
    Sherratt, R.M., Bostock, H., and Sears, T.A. 1980. Effects of 4-aminopyridine on normal and demyelinated mammalian nerve fibers. Nature 283: 570–572.PubMedCrossRefGoogle Scholar
  34. (34).
    Smith, K.J., Blakemore, W.F., and McDonald, W.I. 1979. Central remyelination restores secure conduction. Nature 280: 395–396.PubMedCrossRefGoogle Scholar
  35. (35).
    Stenberger, N.H., Quarles, R.H., Itoyama, Y., and Webster, H. de F. 1979. Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat. Proc. Natl. Acad. Sci. 76: 1510–1514.CrossRefGoogle Scholar
  36. (36).
    Winchell, K.H., Sternberger, N.H., Ouarles, R.H., and Webster, H. de F. 1980. Myelin-associated glycoprotein and basic protein in hexachlorophene lesions. Trans. Amer. Soc. Neurochem. 11: 159.Google Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1982

Authors and Affiliations

  • R. L. Barchi
  • H. Bostock
  • L. A. Greene
  • W. I. McDonald
  • I. Parnas
  • R. H. Quarles
  • M. Schachner
  • E. M. Stadlan

There are no affiliations available

Personalised recommendations