Skip to main content

Distribution and Functional Significance of Sodium and Potassium Channels in Normal and Acutely Demyelinated Mammalian Myelinated Nerve

  • Conference paper
Neuronal-glial Cell Interrelationships

Part of the book series: Dahlem Workshop Reports Life Sciences Research Report ((DAHLEM LIFE,volume 20))

  • 39 Accesses

Abstract

The density of sodium channels in the axonal membrane of normal mammalian nodes of Ranvier is much higher than in any other excitable tissue. In contrast, there are few if any potassium channels. However, experiments in which the myelin is acutely removed show that the internodal axonal membrane, which lacks sodium channels, is rich in potassium channels. This complementary distribution may, it is speculated, be related to the fact that the functional specialization of the mammalian fiber for rapid passage of impulses (high sodium channel density and low potassium channel density at the node) may require some stabilizing influence in the paranodal region to prevent re-entrant type phenomena (hence the internodal potassium channels).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R.S. 1975. Conduction velocity and gating current in the squid giant axon. Proc. R. Soc. (London) B 189: 81–86.

    Article  CAS  Google Scholar 

  2. Bay, C.H., and Strichartz, G.R. 1980. Saxitoxin binding to sodium channels of rat skeletal muscle. J. Physiol., in press.

    Google Scholar 

  3. Berthold, C.H., 1978. Morphology of normal peripheral axons. Physiology and Pathology of Axons., Waxman, S. G., Raven Press, New York, 3–63.

    Google Scholar 

  4. Brismar, T. 1979. Potential clamp analysis on myelinated nerve fibres from alloxan diabetic rats. Acta physiol. scand. 105: 384–386.

    Article  PubMed  CAS  Google Scholar 

  5. Brismar, T. 1980. Potential clamp analysis of membrane currents in rat myelinated nerve fibres. J. Physiol. 298: 171–184.

    PubMed  CAS  Google Scholar 

  6. Chiu, S.Y. 1980. Asymmetry currents in the mammalian myelinated nerve. J. Physiol., in press.

    Google Scholar 

  7. Chiu, S.Y., and Ritchie, J.M. 1980. Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres. Nature 284: 170–171.

    Article  PubMed  CAS  Google Scholar 

  8. Chiu, S.Y., and Ritchie, J.M. 1980. Potassium channels in the paranodal region of acutely emyelinated voltage clamped mammalian myelinated nerve. J. Physiol., in press.

    Google Scholar 

  9. Chiu, S.Y., Ritchie, J.M., Rogart, R.B., and Stagg, D. 1979. A quantitative description of membrane currents in rabbit myelinated nerve. J. Physiol. 292: 149–166.

    PubMed  CAS  Google Scholar 

  10. Colquhoun, D., Rang, H.P., and Ritchie, J.M. 1974. The binding of tetrodotoxin and α-bungarotoxin to normal and denervated mammalian muscle. J. Physiol. 240: 199–226.

    PubMed  CAS  Google Scholar 

  11. Conti, F., Hille, B., Neumcke, B., Nonner, W., and Stämpfli R. 1976. Conductance of the sodium channel in myelinated nerve fibres with modified sodium inactivation. J. Physiol 262: 729–742.

    PubMed  CAS  Google Scholar 

  12. Hafemann, D.R. 1972. Binding of radioactive tetrodotoxin to nerve membrane preparations. Biochim. Biophys. Acta 226: 548–556.

    Google Scholar 

  13. Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51: 199–219.

    Article  PubMed  CAS  Google Scholar 

  14. Hille, B., Ritchie, J.M., and Strichartz, G. 1975. The effect of surface charge on the nerve membrane on the action of tetrodotoxin and saxitoxin in frog myelinated nerve. J. Physiol. 250: 34–45.

    Google Scholar 

  15. Hodgkin, A. 1975. The optimum density of sodium channel in an unmyelinated nerve. Phil. Trans. R. Soc. (London) B 270: 297–300.

    Article  CAS  Google Scholar 

  16. Horackova, M., Nonner, W., and Stampfli, R. 1968. Action potentials and voltage clamp currents of single rat Ranvier nodes. Proc. int. Union Physiol. Sci. 1: 198.

    Google Scholar 

  17. Howe, J.F., Calvin, W.H., and Loeser, J.D. 1976. Impulses reflected from dorsal root ganglia and from focal nerve injuries. Brain Res. 116: 139–144.

    Article  PubMed  CAS  Google Scholar 

  18. Jaimovich, E., Venosa, R.A., Shrager, P., and Horowicz, P. 1976. The density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle. J. Gen. Physiol. 67: 399–416.

    Article  PubMed  CAS  Google Scholar 

  19. Levinson, S.R., and Meves, H. 1975. The binding of tritiated tetrodotoxin to squid giant axons. Phil. Trans. R. Soc. (London)B 270: 349–352.

    Article  CAS  Google Scholar 

  20. Moore, J.W., Narahashi, T., and Shaw, T.I. 1967. An upper limit to the number of sodium channels in nerve membrane ? J. Physiol. 188: 99–105.

    PubMed  CAS  Google Scholar 

  21. Nonner, W., Rojas, E., and Stampfli, R. 1975. Displacement currents in the node of Ranvier. Pfluegers Arch. 354: 1–18.

    Article  CAS  Google Scholar 

  22. Quick, D.C., and Waxman, S.G. 1977. Specific staining of the axon membrane at nodes of Ranvier with ferric ion and ferrocyanide. J.Neurol. Sci. 21: 1–11.

    Google Scholar 

  23. Rasminsky, M. 1978. Ectopic generation of impulses and cross-talk in spinal nerve roots of “dystrophic” mouse. Ann. Neurol. 3: 351–357.

    Article  PubMed  CAS  Google Scholar 

  24. Ritchie, J.M. 1973. Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog. Biophys. Molec. Biol. 26: 147–187.

    Article  CAS  Google Scholar 

  25. Ritchie, J.S. 1978. Sodium channel as a drug receptor. In Cell Membrane Receptors for Drugs and Hormones. A Multidisciplinary Approach, eds. R.W. Straub and L. Bolis, pp. 227–242. New York: Raven Press.

    Google Scholar 

  26. Ritchie, J.M., and Rogart, R.B. 1977. The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev. Physiol. Biochem. Pharmacol. 79: 1–50.

    Article  PubMed  CAS  Google Scholar 

  27. Ritchie, J.M., and Rogart, R.B. 1977. The binding of labelled saxitoxin to the sodium channels in normal and denervated mammalian muscle, and in amphibian muscle. J. Physiol. 269: 341–354.

    PubMed  CAS  Google Scholar 

  28. Ritchie, J.M., and Rogart, R.B. 1977. The density of sodium channels in mammalian myelinated nerve fibers and the nature of the axonal membrane under the myelin sheath. Proc. Nat. Acad. Sci. 74: 211–215.

    Article  PubMed  CAS  Google Scholar 

  29. Ritchie, J.M., Rogart, R.B., and Strichartz, G. 1976. A new method for labelling saxitoxin and its binding to non-myelinated fibres of the rabbit vagus, lobster walking leg and garfish olfactory nerve. J. Physiol. 261: 477–494.

    PubMed  CAS  Google Scholar 

  30. Ritchie, J.M., and Straub, R.W. 1979. Phosphate efflux and oxygen consumption in small non-myelinated nerve fibres at rest and during activity. J. Physiol. 287: 315–327.

    PubMed  CAS  Google Scholar 

  31. Robertson, J.D., 1959. Preliminary observations on the ultrastructure of nodes of Ranvier. Zeitschrift fur Zellforschung und Mikroskopische Anatomie 50: 553–560.

    Article  Google Scholar 

  32. Rosenbluth, J. 1976. Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. J. Neurocytol. 5: 731–745.

    Article  PubMed  CAS  Google Scholar 

  33. Sherratt, R.M., Bostock, H., and Sears. T.A. 1980. Effects of 4-aminopyridine on normal and demyelinated nerve fibres. Nature 283: 570–572.

    Article  PubMed  CAS  Google Scholar 

  34. Stämpfli, R. 1954. Saltatory conduction in nerve. Physiol. Rev. 34: 101–112.

    PubMed  Google Scholar 

  35. Stämpfli, R., and Hille, B. 1976. Electrophysiology of the peripheral myelinated nerve. In Frog Neurobiology, eds. R. Llinas and W. Precht, pp. 1–32. Berlin: Springer-Verlag.

    Google Scholar 

  36. Strichartz, G.R., Rogart, R.B., and Ritchie, J.M. 1979. Binding of radioactively labelled saxitoxin to the squid giant axon. J. Memb. Biol. 48: 357–364.

    Article  CAS  Google Scholar 

  37. Tang, C.M., Strichartz, G.R., and Orkand, R.K. 1980. Sodium channels in axons and glial cells of the optic nerve of Necturus Maculosa. J. Gen. Physiol., in press.

    Google Scholar 

  38. Villegas, J., Sevcik, C., Barnola, F.V., and Villegas, R. 1976. Grayanotoxin, veratrine, and tetrodotoxin-sensitive sodium pathways in the Schwann cell membrane of squid nerve fibers. J. Gen. Physiol. 61: 369–380.

    Article  Google Scholar 

  39. Waxman, S.G., and Quick, D.C. 1978. Intra-axonal ferric ion — ferrocyanide staining of nodes of Ranvier and initial segments in central myelinated fibers. Brain Res. 144: 1–10.

    Article  PubMed  CAS  Google Scholar 

  40. Yates, A.J., Bouchard, J.P., and Wherrett, J.R. 1976. Relation of axon membrane to myelin membrane in sciatic nerve during development: comparison of morphological and chemical parameters. Brain Res. 104: 261–271.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

T. A. Sears

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Ritchie, J.M. (1982). Distribution and Functional Significance of Sodium and Potassium Channels in Normal and Acutely Demyelinated Mammalian Myelinated Nerve. In: Sears, T.A. (eds) Neuronal-glial Cell Interrelationships. Dahlem Workshop Reports Life Sciences Research Report, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68466-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68466-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68468-5

  • Online ISBN: 978-3-642-68466-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics