Skip to main content

Prebiotic Synthesis of Organic Compounds

  • Conference paper
Mineral Deposits and the Evolution of the Biosphere

Part of the book series: Dahlem Workshop Report ((DAHLEM PHYSICAL,volume 3))

Abstract

The heterotrophic hypothesis of the origin of life is now generally accepted. This involves the synthesis of simple organic compounds on the primitive Earth, the polymerization of these compounds, and the organization of the polymers into the first self-replicating organism. The need to synthesize simple organic compounds places constraints on conditions that prevailed on the primitive Earth. The temperature must have been low, O2 was absent, and the atmosphere was reducing. The most effective atmosphere for the synthesis of organic compounds is CH4, N2 or NH3, H2O. Experiments with less reduced atmospheres such as CO, N2 or NH3, H2O, H2 and CO2, N2 or NH3, H2O, H2 do give organic compounds but the yields are generally smaller and fewer compounds are obtained. CO and CO2 atmospheres without H2 give no organic compounds at all or very small yields. Prebiotic syntheses of amino acids, purines, pyrimidines, and sugars are now known. Organic compounds in carbonaceous chondrites are strikingly similar to those produced in laboratory syntheses with electric discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P.H. 1965. Abiogenic synthesis in the Martian environment. Proc. Natl. Acad. Sci. USA 54: 1490–1494.

    Article  PubMed  CAS  Google Scholar 

  2. Bar-Nun, A.; Bar-Nun, N.; Bauer, S.H.; and Sagan, C. 1970. Shock synthesis of amino acids in simulated primitive environments. Science 168: 470–473.

    Article  PubMed  CAS  Google Scholar 

  3. Bar-Nun, A., and Hartman, H. 1978. Synthesis of organic compounds from carbon monoxide and water by UV photolysis. Origins of Life 9: 93–101.

    Article  PubMed  CAS  Google Scholar 

  4. Bernal, J.D. 1951. The Physical Basis of Life. London: Routledge and Kegan Paul.

    Google Scholar 

  5. Cronin, J.R., and Moore, C.B. 1971. Amino acid analyses of the Murchison, Murray, and Allende carbonaceous chondrites. Science 172: 1327–1329.

    Article  PubMed  CAS  Google Scholar 

  6. Ferris, J.P.; Sanchez, R.A.; and Orgel, L.E. 1968. Synthesis of pyrimidines from cyanoacetylene and cyanate. J. Mol. Biol. 33: 693–704.

    Article  PubMed  CAS  Google Scholar 

  7. Friedmann, N., and Miller, S.L. 1969. Phenylalanine and tyrosine synthesis under primitive earth conditions. Science 166: 766–767.

    Article  PubMed  CAS  Google Scholar 

  8. Gabel, N.W., and Ponnamperuma, C. 1967. Model for the origin of monosaccharides. Nature 216: 453–455.

    Article  PubMed  CAS  Google Scholar 

  9. Getoff, N. 1962. Reduktion der Kohlensäure in wässeriger Lösung unter Einwirkung von UV-licht. Z. Naturforsch. 17b: 87–90, 751–757.

    CAS  Google Scholar 

  10. Garrison, W.M.; Morrison, D.C.; Hamilton, J.G.; Benson, A.A.; and Calvin, M. 19 51. Reduction of carbon dioxide in aqueous solutions by ionizing radiation. Science 114: 416–418.

    Google Scholar 

  11. Groth, W., and Weyssenhoff, H. 1960. Photochemical formation of organic compounds from mixtures of simple gases. Planet. Space Sci. 2: 79–85.

    Article  Google Scholar 

  12. Haidane, J.B.S. 1929. Rationalist Annual 148: 3; reprinted In Science and Human Life. New York and London: Harper Bros., 1933, p. 149.

    Google Scholar 

  13. Hayatsu, R., et al. 1972. Catalytic synthesis of nitriles, nitrogen bases and porphyrin-like pigments. Geochim. Cosmochim. Acta 36: 555–571.

    Article  CAS  Google Scholar 

  14. Horowitz, N.H. 1945. On the evolution of biochemical synthesis. Proc. Natl. Acad. Sci. USA 31: 153–157.

    Article  PubMed  CAS  Google Scholar 

  15. Kenyon, D.H., and Steinmann, G. 1969. Biochemical Predestination. New York: McGraw-Hill.

    Google Scholar 

  16. Kvenvolden, K.; Lawless, J.G.; Pering, K.; Peterson, E.; Flores, J.; Ponnamperuma, C.; Kaplan, I.R.; and Moore, C. 1970. Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison Meteorite. Nature 228: 923–926.

    Article  PubMed  CAS  Google Scholar 

  17. Kvenvolden, K.A.; Lawless, J.G.; and Ponnamperuma, C. 1971. Nonprotein amino acids in the Murchison Meteorite. Proc. Natl. Acad. Sci. USA 68: 486–490.

    Article  PubMed  CAS  Google Scholar 

  18. Lawless, J.G.; Zeitman, B.; Pereira, W.E.; Summons, R.E.; Duffield, A.M. 1974. Dicarboxylic acids in the Murchison Meteorite. Nature 251: 40–42.

    Article  CAS  Google Scholar 

  19. Lemmon, R.M. 1970. Chemical evolution. Chem. Rev. 70: 95–109.

    Google Scholar 

  20. Lohrmann, R.; Bridson, P.K.; and Orgel, L.E. 1980. Efficient metal-ion catalyzed template-directed oligonucleotide synthesis. Science 208: 1464–1465.

    Article  PubMed  CAS  Google Scholar 

  21. Lohrmann, R., and Orgel, L.E. 1973. Prebiotic activation processes. Nature 224: 418–420.

    Article  Google Scholar 

  22. Miller, S.L. 1953. A production of amino acids under possible primitive earth conditions. Science 117: 528–529.

    Article  PubMed  CAS  Google Scholar 

  23. Miller, S.L. 1957. The formation of organic compounds on the primitive earth. Ann. NY Acad. Sci. 69: 260–274; reprinted In The Origin of Life on the Earth, ed. A. Oparin. Oxford: Pergamon Press, 1959, pp. 123–135.

    Google Scholar 

  24. Miller, S.L., and Orgel, L.E. 1974. The Origins of Life on the Earth. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  25. Miller, S.L.; Urey H.C.; and Oró, J. 1976. Origin of organic compounds on the primitive earth and in meteorites. J. Mol. Evol. 9: 59–72.

    Article  PubMed  CAS  Google Scholar 

  26. Oparin, A.I. 1938. The Origin of Life. New York: Macmillan.

    Google Scholar 

  27. Oró, J. 1960. Synthesis of adenine from ammonium cyanide. Biochim. Biophys. Res. Comm. 2: 407–412.

    Article  Google Scholar 

  28. Oró, J., and Kimball, A.P. 1961. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 94: 221–227.

    Article  Google Scholar 

  29. Oró, and Kimball, A.P. 1962. Synthesis of purines under possible primitive earth conditions. II. Purine intermediates from hydrogen cyanide. Arch. Biochem. Biophys. 96: 293–313.

    Article  Google Scholar 

  30. Reid, C., and Orgel, L.E. 1967. Synthesis of sugars in potentially prebiotic conditions. Nature 216: 455.

    Article  PubMed  CAS  Google Scholar 

  31. Ring, D.; Wolman, Y.; Friedmann, N.; and Miller, S.L. 1972. Prebiotic synthesis of hydrophobic and protein amino acids. Proc. Natl. Acad. Sci. USA 69: 765–768.

    Article  PubMed  CAS  Google Scholar 

  32. Sagan, C., and Khare, B.N. 1971. Long-wavelength ultra-violet photoproduction of amino acids in the primitive earth. Science 173: 417-420; also in Nature 232: 577–578.

    Google Scholar 

  33. Sanchez, R.A.; Ferris, J.P.; and Orgel, L.E. 1966. Cyano- acetylene in prebiotic synthesis. Science 154: 784–785.

    Article  PubMed  CAS  Google Scholar 

  34. Sanchez, R.A.; Ferris, J.P.; and Orgel, L.E. 1967. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J. Mol. Biol. 30: 223–253.

    PubMed  CAS  Google Scholar 

  35. Sanchez, R.A.; Ferris, J.P.; and Orgel, L.E. 1963. Conversion of 4-aminoimidazole-5-carbonitrile derivatives to purines. J. Mol. Biol. 38: 121–128.

    Article  Google Scholar 

  36. Schwartz, A.W., and Chittenden, G.J.F. 1977. Synthesis of uracil and thymine under simulated prebiotic conditions. Biosystems. 9: 87–92.

    Article  PubMed  CAS  Google Scholar 

  37. Urey, H.C. 1952. On the early chemical history of the earth and the origin of life. Proc. Natl. Acad. Sci. USA 38: 363; also In The Planets. New Haven: Yale University Press, pp. 149–157.

    Google Scholar 

  38. Van Trump, J.E., and Miller, S.L. 1972. Prebiotic synthesis of methionine. Science 178: 859–860.

    Article  PubMed  Google Scholar 

  39. Van Trump, J.E., and Miller, S.L. 1980. The Strecker synthesis in the primitive ocean. In Proceedings of the 3rd ISSOL Meeting, ed. Y. Wolman, Jerusalem.

    Google Scholar 

  40. Wolman, Y.; Haverland, W.H.; and Miller, S.L. 1972. Non-protein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc. Natl. Acad. Sci. USA. 69: 809–811.

    Google Scholar 

  41. Yoshino, D.; Hayatsu, R.; and Anders, E. 1971. Amino acids: catalytic synthesis. Geochim. Cosmochim. Acta 35: 927–938.

    Google Scholar 

  42. Zeitman, B.; Chang, S.; and Lawless, J.G. 1974. Dicar- boxylic acids from electric discharge. Nature 251: 42–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. D. Holland M. Schidlowski

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Miller, S.L. (1982). Prebiotic Synthesis of Organic Compounds. In: Holland, H.D., Schidlowski, M. (eds) Mineral Deposits and the Evolution of the Biosphere. Dahlem Workshop Report, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68463-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68463-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68465-4

  • Online ISBN: 978-3-642-68463-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics