Skip to main content

Content and Isotopic Composition of Reduced Carbon in Sediments

  • Conference paper
Mineral Deposits and the Evolution of the Biosphere

Part of the book series: Dahlem Workshop Report ((DAHLEM PHYSICAL,volume 3))

Abstract

Reduced carbon, commonly a residuum of biological activity, has been a conspicuous constituent of sedimentary rocks since the start of the rock record 3.8 × 109 yr ago. The 36,000 Corg assays presently available for Phanerozoic sediments indicate that the average organic carbon content of sedimentary rocks has oscillated around a mean of 0.5 – 0.6% during the last 600 million years. Lack of detailed correlation between observed Corg variations and the isotope age curve of Phanerozoic carbonates raises doubt as to whether all of the variations reported are real. However, the higher organic carbon content of Carboniferous and younger rocks seems to be reflected by more positive levels of the δ13Ccarb which is to be expected from mass balance considerations. Corg assays for Precambrian rocks fall within the scatter of the Phanerozoic data, suggesting that the organic carbon content of Precambrian sediments does not differ significantly from that of geologically younger formations. The constancy of the isotopic fractionation observed between reduced and oxidized carbon throughout the record is best interpreted as the signature of biological activity during the past 3.5 × 109 yr (or possibly 3.8 × 109 yr).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaart, J.H. 19 76. The pre-3760 Myr old supracrustal rocks of the Isua area, central West Greenland, and the associated occurrence of quartz-banded ironstone. In The Early History of the Earth, ed. B.F. Windley, pp. 177–189. London: Wiley.

    Google Scholar 

  2. Awramik, S.M.; Schopf, J.W.; Walter, M.R.; and Buick, R. 1981. Filamentous fossil bacteria 3.5 Ga-old from the Archaean of Western Australia. Science: in press.

    Google Scholar 

  3. Benedict, C.R. 1978. The fractionation of stable carbon isotopes in photosynthesis. What’s New in Plant Physiology 9: 13–16.

    Google Scholar 

  4. Bolin, B.; Degens, E.T.; Kempe, S.; and Ketner, R. 1979. The Global Carbon Cycle. New York: Wiley.

    Google Scholar 

  5. Bridgwater, D.; Allaart, J.H.; Schopf, J.W.; Klein, C.; Walter, M.R.; Barghoorn, E.S.; Strother, P.; Knoll, A.H.; and Gorman, B.E. 1981. Microfossil-like objects from the Archaean of Greenland: A cautionary note. Nature 289: 51–53.

    Article  Google Scholar 

  6. Cameron, E.M., and Garrels, R.M. 1980. Geochemical compositions of some Precambrian shales from the Canadian Shield. Chem. Geol. 28: 181–197.

    Article  CAS  Google Scholar 

  7. Chang, S.; Des Marais, D.; Mack, R.; Miller, S.L.; and Strathearn, G. 1981. Prebiotic organic synthesis and the origin of life. In Origin and Evolution of Earth’s Earliest Biosphere, ed. J.W. Schopf. Princeton, NJ: Princeton University Press, in press.

    Google Scholar 

  8. Degens, E.T. 1969. Biogeochemistry of stable carbon isotopes. In Organic Geochemistry, eds. G. Eglinton and M.T. Murphy, pp. 304 - 329. Berlin: Springer.

    Google Scholar 

  9. Dunlop, J.S.R.; Muir, M.D.; Milne, V.A.; and Groves, D.I. 1978. A new microfossil assemblage from the Archaean of Western Australia. Nature 274: 676–678.

    Article  Google Scholar 

  10. Durand, B. 1980. Kerogen. Paris: Editions Technip.

    Google Scholar 

  11. Eglinton, G., and Calvin, M. 1967. Chemical fossils. Sci. Am. 216: 32–43.

    Article  CAS  Google Scholar 

  12. Eichmann, R., and Schidlowski, M. 1975. Isotopic fractionation between coexisting organic carbon-carbonate pairs in Precambrian sediments. Geochim. Cosmochim. Acta 39: 585–595.

    Article  CAS  Google Scholar 

  13. Fuchs, G.; Thauer, R.; Ziegler, H.; and Stichler, W. 1979. Carbon isotope fractionation by Methanobacterium thermo-autotrophicum. Arch. Microbiol. 120: 135–139.

    Article  CAS  Google Scholar 

  14. Galimov, E.M. 1980. 13C/12C in kerogen. In Kerogen, ed. B. Durand, pp. 271–299. Paris: Editions Technip.

    Google Scholar 

  15. Garrels, R.M., and Lerman, A. 1977. The exogenic cycle: reservoirs, fluxes and problems. In Global Chemical Cycles and Their Alteration by Man, ed. W. Stumm, pp. 23–31. Berlin: Abakon.

    Google Scholar 

  16. Hoefs, J., and Frey, M. 1976. The isotopic composition of carbonaceous matter in a metamorphic profile from the Swiss Alps. Geochim. Cosmochim. Acta 40: 945–951.

    Article  CAS  Google Scholar 

  17. Holland, H.D. 19 78. The Chemistry of the Atmosphere and Oceans. New York: Wiley.

    Google Scholar 

  18. Hunt, J.M. 1972. Distribution of carbon in crust of Earth. Bull. Am. Assoc. Petrol. Geol. 56: 2273–2277.

    CAS  Google Scholar 

  19. Kaplan, I.R., and Nissenbaum, A. 1966. Anomalous carbon isotope ratios in nonvolatile organic material. Science 153: 744–745.

    Article  PubMed  CAS  Google Scholar 

  20. Lancet, M.S., and Anders, E. 1970. Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science 170: 980–982.

    Article  PubMed  CAS  Google Scholar 

  21. Lowe, D.R. 1980. Stromatolites 3.400-Myr old from the Archaean of Western Australia. Nature 284: 441–443.

    Article  Google Scholar 

  22. McKirdy, D.M., and Powell, T.G. 1974. Metamorphic alteration of carbon isotopic composition in ancient sedimentary organic matter: new evidence from Australia and South Africa. Geology 2: 591–595.

    Article  CAS  Google Scholar 

  23. O’Leary, M.H. 1981. Carbon isotope fractionation in plants. Phytochemistry: in press.

    Google Scholar 

  24. Pardue, J.W.; Scalan, R.S.; Van Baalen, C.; and Parker, P.L. 19 76. Maximum carbon isotope fractionation in photosynthesis by blue-grren algae and a green alga. Geochim. Cosmochim. Acta 40: 309–312.

    Google Scholar 

  25. Park, R., and Epstein, S. 1960. Carbon isotope fractionation during photosynthesis. Geochim. Cosmochim. Acta 21: 110–126.

    Article  CAS  Google Scholar 

  26. Peters, K.E.; Rohrback, B.G.; and Kaplan, I.R. 1980. Laboratory-simulated thermal maturation of recent sediments. In Advances in Organic Geochemistry 1979, eds. A.G. Douglas and J.R. Maxwell, pp. 547–557. Oxford: Pergamon.

    Google Scholar 

  27. Pflug, H.D. 19 78. Yeast-like microfossils detected in oldest sediments of the Earth. Naturwissenschaften 65: 611–615.

    Google Scholar 

  28. Reimer, T.O.; Barghoorn, E.S.; and Margulis, L. 1979. Primary productivity in an Early Archaean microbial ecosystem. Precambrian Res. 9: 93–104.

    Article  CAS  Google Scholar 

  29. Ronov, A.B. 1958. Organic carbon in sedimentary rocks (in relation to the presence of petroleum). Geochemistry 1958: 510–536.

    Google Scholar 

  30. Ronov, A.B. 1980. Osadotchnaya obolotchka zemli (20th Vernadski Lecture). Moscow: Izdatel’stvo Nauka.

    Google Scholar 

  31. Ronov, A.B., and Yaroshevski, A.A. 1969. Chemical composition of the Earth’s crust. Am. Geophys. Union Geophys. Mon. Ser. 13: 37–57.

    Google Scholar 

  32. Sackett, W.M.; Nakaparksin, S.; and Dalrymple, D. 1968. Carbon isotope effects in methane production by thermal cracking. In Advances in Organic Geochemistry 1966, eds. G.D. Hobson and G.C. Speers, pp. 37–53. Oxford: Pergamon.

    Google Scholar 

  33. Schidlowski, M. 1980. Antiquity of photosynthesis: possible constraints from Archaean carbon isotope record. In Biogeochemistry of Ancient and Modern Environments, eds. P.A. Trudinger and M.R. Walter, pp. 47–54. Berlin: Springer.

    Google Scholar 

  34. Schidlowski, M.; Appel, P.W.U.; Eichmann, R.; and Junge, C.E. 1979. Carbon isotope geochemistry of the 3.7 × 109 yr old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochim. Cosmochim. Acta 43: 189–199.

    Google Scholar 

  35. Schidlowski, M.; Hayes, J.M.; and Kaplan, J.R. 1981. Iso- topic inferences of ancient biochemistries. In Origin and Evolution of Earth’s Earliest Biosphere, ed. J.W. Schopf. Princeton, NJ: Princeton University Press, in press.

    Google Scholar 

  36. Schidlowski, M., and Junge, C.E. 1981. Coupling among the terrestrial sulfur, carbon and oxygen cycles: numerical modeling based on revised Phanerozoic carbon isotope record. Geochim Cosmochim. Acta 45: 589–594.

    Google Scholar 

  37. Smith, B.N. 1976. Evolution of C4 photosynthesis in response to changes in carbon and oxygen concentrations in the atmosphere through time. BioSystems 24–32.

    Google Scholar 

  38. Tissot, B.P., and Welte, D.H. 1978. Petroleum Formation and Occurrence. Berlin: Springer.

    Google Scholar 

  39. Trask, P.D., and Patnode, H.W. 1942. Source Beds of Petroleum. Tulsa: American Association of Petrol. Geol.

    Google Scholar 

  40. Valley, J.W., and O’Neil, J.R. 1981. 13C/12C exchange between calcite and graphite: a possible thermometer in Grenville marbles. Geochim. Cosmochim. Acta 45: 411–419.

    Google Scholar 

  41. Veizer, J.; Holser, W.T.: and Wilgus, C.K. 1980. Correlation of 13c/i2c and 34s/32g secular variations. Geochim. Cosmochim. Acta 44: 579–587.

    Google Scholar 

  42. Walter, M.R.; Buick, R.; and Dunlop, J.S.R. 1980. Stromatolites 3.400–3.500 Myr old from the North Pole area, Western Australia. Nature 284: 443–445.

    Google Scholar 

  43. Welte, D.H.; Kalkreuth, W.; and Hoefs, J. 1975. Age- trend in carbon isotopic composition in Paleozoic sediments. Naturwissenschaften 62: 482–483.

    Article  CAS  Google Scholar 

  44. Whittaker, R.H., and Likens, G.E. 1973. Carbon in the biota. In Carbon and the Biosphere, eds. C.M. Woodwell and E.V. Pecan, pp. 281–302. Washington, D.C.: U.S. Atomic Energy Commission.

    Google Scholar 

  45. Wong, W.W., and Sackett, W.M. 1978. Fractionation of stable carbon isotopes by marine phytoplankton. Geochim. Cosmochim. Acta 42: 1809–1815.

    Google Scholar 

  46. Wong, W.W.; Sackett, W.M.; and Benedict, C.R. 1975. Isotope fractionation in photosynthetic bacteria during carbon dioxide assimilation. Plant Physiol. 55: 475–479.

    Article  PubMed  CAS  Google Scholar 

  47. Woodwell, G.M.; Whittaker, R.H.; Reiners, W.A.; Likens, G.E.; Delwiche, C.C.; and Botkin, D.D. 1978. The biota and the world carbon budget. Science 199: 141–146.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. D. Holland M. Schidlowski

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Schidlowski, M. (1982). Content and Isotopic Composition of Reduced Carbon in Sediments. In: Holland, H.D., Schidlowski, M. (eds) Mineral Deposits and the Evolution of the Biosphere. Dahlem Workshop Report, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68463-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68463-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68465-4

  • Online ISBN: 978-3-642-68463-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics