Cretaceous-Cenozoic History of the West Saharan Continental Margin (NW Africa): Development, Destruction and Gravitational Sedimentation

  • Ulrich von Rad
  • Gerd Wissmann


The most importantconstructional phases of the mature passive West Saharan continental margin involved the buildup of a thick Jurassic carbonate platform, overwhelmed by up to 4 km of Early Cretaceous Wealden-type deltaic sediments. Rollover structures between antithetic growth faults produced the “lower slope anticline” and a convex Cretaceous paleoslope. We recognized no salt diapirs, but local piercement structures probably caused by mobilized Early Cretaceous prodeltaic shale. During late Cretaceous to Tertiary times the continental slope was hardly prograded. During Tertiary (especially Neogene) times the depocenter shifted to the upper rise.

Evidence from seismic profiles correlated with DSDP, commercial well, dredge, and land geological data allow the differentiation of the complex, multi-phase mid-Cretaceous to Cenozoic history ofslope destruction. At the following times slope canyons were excavated and regional unconformities formed: (1) mid-Cretaceous (upper slope; precursor valleys); (2) early Senonian; (3) Paleocene (pronounced unconformity); (4) late Eocene (local); (5) mid- to late Oligocene (major lower slope erosion; up to 100 M.Y. hiatus; major canyon cutting phase);(6) mid- to late Miocene (local); (7) Pliocene (shelf and upper slope; deeply incised Uad Craa Channel); (8) late Pleistocene (canyon reactivation, slope gullies, and incisions).

Some of these accentuated erosional phases (especially 5 and 8) can be correlated with intensified Atlantic bottom water circulation from climatic cooling during periods of exceptionally low sea level causing hiatuses on the shelf and increased mass wasting at the slope (Fig.10). A very large sediment volume (7,500 — 15,000 km3 off Cape Bojador) was removed during the mid-Tertiary sculpturing of the lower slope, probably by enhanced contour currents (pre-AABW?) and associated gravitative mass transport. In total 900 km3 of sediments were excavated by slope canyons, most of which do not extend to the shelfbreak. Both processes caused a gradual retreat of the base-of-slope line and accentuated the convex shape of the slope in this area.

During early to mid-Miocene times, massive slope failure led to thegravitative deposition of olistostromes, debris flows, turbidites and slumps on the oversteepened lowermost paleoslope, until an equilibrium gradient was achieved (Figs. 11,12). During the late Pleistocene the same processes caused giant translational slides with up to > 100 m high slide scars (Figs. 1, 8). The triggering of these massive slides at this very time and setting (passive margin, low gradient and sedimentation rates) is still enigmatic.


Debris Flow Continental Margin Continental Slope Late Eocene Late CRETACEOUS 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almagor G, Wiseman G (1977) Analysis of submarine slumping in the continental slope off the southern coast of Israel. Mar Geotechn 2: 349–388CrossRefGoogle Scholar
  2. Arthur MA, von Rad U (1979) Early Neogene base-of-slope sedimentation at Site 397: sequential evolution of gravitative mass transport processes and redeposition along the Northwest African passive margin. In: Ryan WBF, von Rad U et al. Init Repts Deep Sea Drilling Project 47 (1): 603–639Google Scholar
  3. Arthur MA, von Rad U, Cornford C, McCoy FC, Sarnthein, M (1979) Evolution and sedimentary history of the Cape Bojador continental margin, Northwestern Africa. In: Ryan WBF, von Rad U, et al. Init Repts Deep Sea Drilling Project 47 (1): 773–816Google Scholar
  4. AUXINI (Departamento de Investigaciones Petroliferas de AUXINI, 1969 ) Correlacion estratigraphica de los sondeos perforados en el Sahara espanol. Bol Geol Minero, Madrid 83: 235–251Google Scholar
  5. Bergren WA, Hollister CD (1974) Paleogeography and the history of circulation in the Atlantic region. In: Hay WW (ed) Studies in Paleooceanography. Soc Econ Petrol Min Spec Publ 20: 126–186Google Scholar
  6. Bruce CH (1973) Pressured shale and related sediment deformation: Mechanism for development of regional contemporaneous faults. Am Assoc Petrol Geol Bull 57 (5): 878–886Google Scholar
  7. Chamley H (1979) North Atlantic clay sedimentation and paleoen–vironment since late Jurassic. In: Talwani M et al (eds) Deep Drilling results in the Atlantic Ocean: continental margins and paleoenvironment. M. Ewing Ser 3, Am Geophys Union, Washington DC; pp 342–361CrossRefGoogle Scholar
  8. Choubert G, Faure-Muret A, Sougy J (1968) Carte tectonique international de I’Afrique 1: 5,000 000, Sheet 1. Assoc Afr Geol Surv, UNESCO, ParisGoogle Scholar
  9. Coleman JM, Garrison LE (1977) Geological aspects of marine slope stability, northwestern Gulf of Mexico. Mar Geotechn 2: 9–44CrossRefGoogle Scholar
  10. Connan J (1974) Time-temperature relation in oil genesis. Am Assoc Petrol Geol Bull 58: 2516–2521Google Scholar
  11. CONOCO (1969) Spansah 51A-1, offshore Spanish Sahara. Final Report by Continental Oil Company of Spain, Spanish Gulf Oil Company, Compania Espanol de Petroleas S.A. Exploration Department, unpublished report and logsGoogle Scholar
  12. Diester-Haass L (1979) DSDP Site 397: climatological, sedimentolo gical, and oceanographic changes in the Neogene autochthonous sequence. In: von Rad U, Ryan WBF et al Init Repts Deep Sea Drilling Project 47 (1): 647–670Google Scholar
  13. Dingle RV (1980) Large allochthonous sediment masses and their role in the construction of the continental slope and rise off southwestern Africa. Mar Geol 37: 333–354CrossRefGoogle Scholar
  14. Einsele G, von Rad U (1979) Facies and paleoenvironment of Early Cretaceous sediments in DSDP Site 397 and in the Aaiun Basin (NW Africa). In: von Rad U, Ryan WBF et al., Init Repts Deep Sea Drilling Project 47 (1): 559–577Google Scholar
  15. Embley RW (1976) New evidence for occurrence of debris flow deposits in the deep sea. Geology 4: 371–374CrossRefGoogle Scholar
  16. Embley RW, Jacobi RD (1977) Distribution and morphology of large submarine sediment slides and slumps on Atlantic continental margins. In: Richards AF (ed) Marine slope stability. Mar Geotechn 2:205–228Google Scholar
  17. Egbogah EO, Lambert-Aikhionbare DO (1980) Possible new oil potentials of the Niger delta. Oil Gas J 78 (n 15): 176–184Google Scholar
  18. Fischer AG, Arthur MA (1977) Secular variations in the pelagic realm. In: Cook HE, Enos P (eds) Deep water carbonate environments, Soc Econ Paleont Min Spec Publ 25: 19–50Google Scholar
  19. Guieu G (1976) Les bassins a evaporites de la marge ouest- africaine du Maroc a l’Angola. Dep Geol Univ Dakar Rep no 32Google Scholar
  20. Hinz K (1979) Seismic sequences of Cape Bojador, Northwest Africa. In: von Rad U, Ryan WBF et al., Init Repts Deep Sea Drilling Project 47 (1): 485–489Google Scholar
  21. Hinz K, Seibold E, Wissmann G (1974) Continental slope anticline and unconformities off West Africa. “Meteor” Forsch Ergebn C 17: 67–73Google Scholar
  22. Hoskins H, Rogers CU, Woo AO (1974) Data report of oblique reflection-refraction radiosonobuoy profiles on the African Atlantic continental margin (R.V. ATLANTIS II cruise 67 and 75). Woods Hole Ocean Inst Rep 74–34: 40 ppGoogle Scholar
  23. Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean and their impact on global paleooceanography. J Geophys Res 82: 3843–3860CrossRefGoogle Scholar
  24. Lancelot Y, Seibold E (1978) The evolution of the central northeastern Atlantic-Summary of results of DSDP Leg 41. In: Lancelot Y, Seibold E et al., Init Repts Deep Sea Drilling Project 41: 1215–1245Google Scholar
  25. Lancelot Y, Seibold E et al (1978), Initial Reports of the Deep Sea Drilling Project, vol 41. U.S. Government Printing Off Washington, 1259 ppGoogle Scholar
  26. Lancelot Y, Winterer EL (1980) Evolution of the Moroccan oceanic basin and adjacent continental margin — a synthesis. In: Lancelot Y, Winterer EL et al Init Repts Deep Sea Drilling Project 50: 801–833CrossRefGoogle Scholar
  27. Lehner P, de Ruiter PAD (1977) Structural history of the Atlantic margin of Africa, Am Assoc Petrol Geol Bull 61: 961–981Google Scholar
  28. Lowrie A, Escowitz E (1969) Kane 9: global ocean floor and research data series. US Government Printing Office Washington (DC) 1: 976 ppGoogle Scholar
  29. Mac Ilvaine JC, Ross DA (1979) Sedimentary processes on the continental slope of New England. J Sedim. Petrol 49 (2): 563–574Google Scholar
  30. McCoy FW, Zimmerman HB (1977) A history of sediment lithofacies in the South Atlantic Ocean. In: Supko PR, PerchNielsen K et al. Init Repts Deep Sea Drilling Project 39: 1047–1080Google Scholar
  31. McDougall I, Schmincke HU (1977) Geochronology of Gran Canaria, Canary Islands: age of shield building volcanism and other magmatic phases, Bull Volcanol 40: 1–21Google Scholar
  32. McGregor B (1978) Seismic reflection profiles of the United-States east coast continental margin, Natl Ocean At Agency Tech Rep ERL 398–AOML 28: 17 ppGoogle Scholar
  33. Mitchum Jr RM, Vail PR (1977) Seismic stratigraphic interpretation procedure. In: Vail PR et al (eds), Seismic stratigraphy and global changes of sea level, Am Assoc Petrol Geol Mem 26: 135–144Google Scholar
  34. Nairn EM, Noltimier HC, Nairn B (1980) Surface magnetic survey of the Souss Basin, southwestern Marocco: evaluation of the tectonic role postulated for the Agadir and Tarfaya Fault Zones and the South Atlas Flexure. Tectonophysics 64: 235–248CrossRefGoogle Scholar
  35. Querol R (1966) Regional geology of the Spanish Sahara. In: Reyre D (ed) Sedimentary basins of the African coast; Symposium, part 1, Atlantic coast. Assoc Afr Geol Surv UNESCO: 27–39Google Scholar
  36. Pitman III WC (1978) Relationship between eustacy and stratigraphic sequences of passive margins. Geol Soc Am Bull 89: 1389–1403CrossRefGoogle Scholar
  37. Ratschiller LK (1970) Lithostratigraphy of the northern Spanish Saharan. Mem Mus Tridentino Sci Trento 18 (1): 1–80Google Scholar
  38. Robertson AHF, Stillman CJ (1979) Late Mesozoic sedimentary rocks of Fuerteventura, Canary Islands: implications for West African continental margin evolution. J Geol Soc London 136: 47–60CrossRefGoogle Scholar
  39. Rona PA (1970) Comparison of continental margins of eastern North America at Cape Hatteras and northwestern Africa at Cap Blanc. Am Assoc Petrol Geol Bull 54: 129–157Google Scholar
  40. Rust U, Wienecke F (1973) Bathymetrische und geomorphologische Bearbeitung von submarinen “Einschnitten” im Seegebiet vor Westafrika. Ein methodischer Versuch. Munchner Geogr Abh Geogr Inst Univ Munchen 9: 53–67Google Scholar
  41. Ryan WBF, Cita MB, Miller EL, Hanselmann D, Nesteroff WD, Hecker B, Nibbelink M (1978) Bedrock geology in New England submarine canyons. Oceanol Acta 1 (2): 233–254Google Scholar
  42. Sarnthein M, Diester-Haass L (1977) Eolian sand turbidites off Northwest–Africa. J Sediment Petr 47: 868–890Google Scholar
  43. Schlager W (1980) Mesozoic calciturbidites in Deep Sea Drilling Project Hole 416A: recognition of a drownwed carbonate platform. In: Lancelot Y, Winterer EL et al Init Repts Deep Sea Drilling Project 50: 733–749Google Scholar
  44. Schlee JS, Dillon WP, Grow JA (1979) Structure of the continental slope off the eastern United States. In: Doyle LJ, Pilkey OH (eds) Geology of continental slopes, Soc Econ Paleont Min Spec Publ 27: 95–117Google Scholar
  45. Schmincke HU (1976) The geology of the Canary Islands. In: Kunkel G (ed) Biogeography and ecology in the Canary Islands, W.Junk, The Hague pp 67–184CrossRefGoogle Scholar
  46. Schmincke HU, von Rad U (1979) Neogene evolution of Canary Island volcanism inferred from ash layers and volcaniclastic sandstones of DSDP Site 397 (Leg 47A). In: von Rad U, Ryan WBF et al., Init Repts Deep Sea Drilling Project 47 (1): 703–725Google Scholar
  47. Seibold E (1972) Cruise 25/1971 of R.V. “Meteor”: continental margin of West Africa General report and preliminary results. “Meteor” Forsch Ergebn C 10: 17–38Google Scholar
  48. Seibold E, Hinz K (1974) Continental slope construction and destruction, West Africa. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer New York Heidelberg Berlin, pp 179–196Google Scholar
  49. Seibold E, Hinz K (1976) German cruises to the continental margin of North West Africa in 1975: General reports and preliminary results from “Valdivia” 10 and “Meteor” 39. “Meteor” Forsch Ergebn C 25: 47–80Google Scholar
  50. Shepard FP (1973) Submarine geology, 3rd edn Harper & Row New York, 517 ppGoogle Scholar
  51. Shepard FP, Dill RF (1966) Submarine canyons and other sea valleys. Rand McNalley & Co Chicago, 381 ppGoogle Scholar
  52. Summerhayes CP, Bornhold BD, Embley RW (1979) Surficial slides and slumps on the continental slope and rise of South West Africa: a reconnaissance study. Mar Geol 31: 265–277CrossRefGoogle Scholar
  53. Summmerhayes CP, Milliman JD, Briggs SR, Bee AG, Hogan C (1976) Northwest African shelf sediments: influence of climate and sedimentary processes. J Geol 84: 277–300CrossRefGoogle Scholar
  54. Summerhayes CP, Nutter AH, Tooms JS (1971) Geological structure and development of the continental margin of Northwest Africa. Mar Geol 11: 1–25CrossRefGoogle Scholar
  55. Tucholke BE, Mountain GS (1979) Seismic stratigraphy, lithostratigraphy and paleosedimentation patterns in the North American Basin. In: Talwani M et al (eds) Deep Drilling results in the Atlantic Ocean: continental margins and paleoenvironment, M Ewing Ser 3. Am Geophys Union: 59–86Google Scholar
  56. Uchupi E, Emery KO, Bowin CO, Phillips JO (1976) Continental margin off Western Africa. Am Assoc Petrol Geol Bull 60: 809–878Google Scholar
  57. Vail PR, Mitchum Jr RM, Thompson III S (1977) Global cycles of relative changes of sea level. In: Vail PR et al (eds) Seismic stratigraphy and global changes of sea level Am Assoc Petrol Geol Mem 26: 83–98Google Scholar
  58. Van Andel T, Thiede J, Sclater JG, Hay WW (1978) Depositional history of the South Atlantic Ocean during the last 125 m.y. J Geol 85: 651–698CrossRefGoogle Scholar
  59. von Rad U, Arthur MA (1979) Geody– namic, sedimentary, and volcanic evolution of the Cape Bojador continental margin (NW Africa). In: Talwani M et al (eds) Deep drilling results in the Atlantic Ocean: Continental margins and paleoenvironment, M Ewing Ser 3, Am Geophys Union: 187–203Google Scholar
  60. von Rad U, Cepek P, von Stackelberg U, Wissmann G, Zobel B (1979) Cretaceous and Tertiary sediments from the Northwest African slope (dredges and cores supplementing DSDP results). Mar Geol 29: 273–312CrossRefGoogle Scholar
  61. von Rad U, Einsele G (1980) Mesozoic-Cainozoic subsidence history and paleobathymetry of the northwest African continental margin (Aaiun Basin to DSDP Site 397). Phil Trans Royal Soc London Ser A 294: 37–50CrossRefGoogle Scholar
  62. von Rad U, Ryan WBF et al (1979) Initial Reports of the Deep Sea Drilling Project, 47 (1): 835 ppGoogle Scholar
  63. von Stackelberg U, von Rad U, Zobel B (1979) Asymmetric sedimentation around Great Meteor Sea-mount ( North Atlantic ). Mar Geol 33: 117–132Google Scholar
  64. Watkins JS, Hoppe KW (1979) Seismic reflection reconnaissance of the Atlantic margin of Morocco. In: Talwani M et al (eds) Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment, M Ewing Ser 3; Am Geophys Union: 205–217CrossRefGoogle Scholar
  65. Wiedmann J, Butt A, Einsele G (1978) Vergleich von marokkanischen Kreide-Kustenaufschlussen und Tiefseebohrungen (DSDP): Stratigraphie, Palaoenvironment und Subsidenz an einem passiven Kontinentalrand. Geol Rundschau 67 (2): 454–508CrossRefGoogle Scholar
  66. Wissmann G (1979) Cape Bojador slope, an example for potential pitfalls in seismic interpretation without the information of outer margin drilling. In: von Rad U, Ryan WBF et al Init Repts Deep Sea Drilling Project 47 (1): 491–499Google Scholar
  67. Wissmann G, von Rad U (in press) Morphologie und Struktur der submarinen Canyons am Kontinentalhang vor der West — Sahara (NW Afrika). “Meteor” Forsch Ergebn Reihe CGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Ulrich von Rad
    • 1
  • Gerd Wissmann
    • 1
  1. 1.Bundesanstalt für Geowissenschaften and RohstoffeHannover 51Germany

Personalised recommendations